IJAA  Vol.1 No.3 , September 2011
The Influence of the Planets, Sun and Moon on the Evolution of the Earth’s Axis
Abstract: To study climate evolution, we consider the rotational motion of the Earth. The law of angular momentum change is analyzed, based on which the differential equations of rotational motion are derived. Problems with initial conditions are discussed and the algorithm of the numerical solution is presented. The equations are numerically integrated for the action of each planet, the Sun and the Moon on the Earth separately over 10 kyr. Results are analyzed and compared to solutions of other authors and to observation data.
Cite this paper: nullJ. Smulsky, "The Influence of the Planets, Sun and Moon on the Evolution of the Earth’s Axis," International Journal of Astronomy and Astrophysics, Vol. 1 No. 3, 2011, pp. 117-134. doi: 10.4236/ijaa.2011.13017.

[1]   M. Milancovitch, “Mathematische Klimalhre und Astro- nomische Theorie der Klimaschwankungen,” Gebruder Borntraeger, Berlin, 1930.

[2]   D. Brouwer and A. J. J. Van Woerkom, “The Secular Variation of the Orbital Elements of the Principal Planets,” Astronomical Papers, Vol. 13, 1950, pp. 81- 107.

[3]   Sh. G. Sharaf and N. A. Budnikova, “O Vekovykh Izmeneniyakh Elementov Orbity Zemli, Vliyayschikh Na klimaty Geologicheskogo Proshlogo (The Secular Variation of the Orbital Elements of the Earth as a Control of Past Climates),” Bull. ITA AN SSSR No. 11, 1967, pp. 231-261.

[4]   A. Berger and M. F. Loutre, “Insolation Values for the Climate of the Last 10 million Years,” Quaternary Science Reviews, Vol. 10, No. 4, 1991, pp. 297-317. doi:10.1016/0277-3791(91)90033-Q

[5]   J. Laskar, F. Joutel and F. Boudin, “Orbital, Precessional and Insolation Quantities for the Earth from –20 Myr to +10 Myr,” Astronomy and Astrophysics, Vol. 270, No. 1-2, 1993, pp. 522-533.

[6]   V. P. Melnikov and J. J. Smulsky, “Astronomical Theory of Ice Ages: New Approximations, Solutions and Cha- llenges,” Academic Publishing House, Novosibirsk, 2009.

[7]   P.-S. Laplace, “Précis de l’histore de l’astronomie,” In: P.-S. Laplace, Ed., Ocuvres Complétes, Tome VI, Livre V, Gautier-Villars, Paris, 1878-1912, pp. 454-486.

[8]   P. M. Mathews and P. Bretagnon, “Polar Motions Equivalent to High Frequency Nutations for a Nonrigid Earth with Anelastic Mantle,” Astronomy & Astrophysics, Vol. 400, No. 3, 2003, pp. 1113-1128.

[9]   P. Bretagnon, P. Rocher and J. L. Simon, “Theory of the Rotation of the Rigid Earth,” Astronomy and Astro- physics, Vol. 319, 1997, pp. 305-317.

[10]   T. R. Quinn, S. Tremaine and M. Duncan, “A Three Million Year Integration of the Earth’s Orbit,” Astrono- mical Journal, Vol. 101, 1991, pp. 2287-2305.

[11]   P. Bretagnon and J. L. Simon, “Towards the Construction of a New Precession-Nutation Theory of Nonrigid Earth,” Celestial Mechanics and Dynamical Astronomy, Vol. 80, No. 3-4, 2001, pp. 177-184. doi:10.1023/A:1012265826581

[12]   J. J. Smulsky, “The Theory of Interaction,” Publishing House of Novosibirsk University, Novosibirsk, 1999. (In Russian)

[13]   J. J. Smulsky, “The Theory of Interaction,” Cultural Information Bank, Yekaterinburg, 2004. (In English)

[14]   H. Lamb, “Dynamics,” Cambrige University Press, Cam- brige, 1929.

[15]   W. M. Smart, “Celestial Mechanics,” John Wiley, New York, 1961.

[16]   S. Newcomb, “The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy,” Govern- ment Printing Office, Washington, 1895.

[17]   G. N. Duboshin, “Nebesnaya Mekhanica I Astrodinamica (Celestial Mechanics and Astrodynamics),” Nauka, Moskva, 1976.

[18]   F. Roosbeek and V. Dehant, “RDAN97: An Analytical Development of Rigid Nutation Series Using the Torque Approach,” Celestial Mechanics and Dynamical Astro- nomy, Vol. 70, No. 4, 1998, pp. 215-253. doi:10.1023/A:1008350710849

[19]   J. L. Simon, P. Bretagnon, J. Chapront, M. Chapront- Touzé, G. Francou and J. Laskar, “Numerical Expre- ssions for Precession Formulae and Mean Elements for the Moon and Planets,” Astronomy and Astrophysics, Vol. 282, No. 2, 1994, pp. 663-683.

[20]   J. J. Smulsky, “Osesimmetrichnaya Zadacha Vzaimi- deistviya N-tel (The Axisymmetrical Problem of Gravi- tational Interaction of N Bodies),” Matematicheskoe Modelirovanie, Vol. 15, No. 5, 2003, pp. 27-36. (In Russian)

[21]   J. J. Smulsky, “Matematicheskaya Model Solnechnoi Sistemy (A Mathematical model of the Solar System),” In: V. A. Bereznev, Ed., Teoreticheskie i Pricladnye Zadachi Nelineinogo Analiza, Vychislitelny Centr Imeni Dorod- nitsyna, Moskva, 2007, pp. 119-139. (In Russian)