Back
 AJPS  Vol.8 No.2 , January 2017
Mycofungicide: Trichoderma Based Preparation for Foliar Applications
Abstract: The Trichoderma based emulsifiable mycofungicide for controlling foliar diseases lessened the yield loss to economically acceptable level with significant increase of the quality of product. The amount of phylloplane originated T. harzianum and T. parceramosum strains containing liquid formulation, to be applied as leaf spray, might be reduced in two order of magnitude as compared to the solid preparations to achieve the same effect. Both sensitivity of 13 phytopathogenic fungi to antifungal properties of toxic substances released by 32 Trichoderma strains and their susceptibility to the same were examined during development of new mycofungicide. Both toxin production of Trichodermas and the sensitivity of target fungi varied within large limits, being Pythium irregulare the most, while Phytophthora infestans and Macrophomina phaseolina the less tolerant. The sensitivity responses of fungi to toxins correlated to their susceptibility to antagonists. The spectrum of antagonists of pathogenic fungus or targets of Trichoderma strain proved to be unpredictable. Conidia of Trichoderma strains in liquid paraffin (LP) of pharmaceutical quality (LP PQ) survived over 2 years. However, in commercial LP the shelf life of them significantly decreased in strain dependent manner, and the presence of emulsifiers selectively reduced the survival rate as well. The LP PQ was not phytotoxic in therapeutic doses, but commercial LP proved to be toxic when applied as leaf spray independently on the emulsifiers. Both fungitoxic and phytotoxic contaminants of commercial LP could be eliminated with activated carbon.
Cite this paper: Oros, G. and Naár, Z. (2017) Mycofungicide: Trichoderma Based Preparation for Foliar Applications. American Journal of Plant Sciences, 8, 113-125. doi: 10.4236/ajps.2017.82009.
References

[1]   Weindling, R. (1932) Trichoderma lignorum as a Parasite of Other Soil Fungi. Phytopathology, 22, 837-845.

[2]   Weindling, R. and Fawcett, H.S. (1934) Experiments in Biological Control of Rhizoctonia Damping-off. [Abstract.] Phytopathology, 24, 1142.

[3]   Harman, E.G. (2006) Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology, 96, 190-194.
https://doi.org/10.1094/PHYTO-96-0190

[4]   Mukherjee, P.K., Horwitz, B.A., Singh, U.S., Mukherjee, M. and Schmoll, M. (2013) Trichoderma in Agriculture, Industry and Medicine: An Overview. In: Prasun, K., Mukherjee, B.A., Horwitz, Singh Mala Mukherjee, U.S. and Schmoll, M., Eds., Trichoderma: Biology and Applications, CABI, Oxford, 1-10.
https://doi.org/10.1079/9781780642475.0001

[5]   Gupta, V.K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I. and Tuohy, M. (2014) Biotechnology and Biology of Trichoderma. Elsevier, UK.

[6]   Papavizas, G.C. (1985) Trichoderma and Gliocladium: Biology, Ecology, and Potential for Biocontrol. Annual Review of Phytopathology, 23, 923.
https://doi.org/10.1146/annurev.py.23.090185.000323

[7]   Herrera-Estrella, A. and Chet, I. (2004) The Biological Control Agent Trichoderma—From Fundamentals to Applications. In: Arora, D.K., Ed., Fungal Biotechnology in Agricultural, Food and Environmental Applications, Marcel Dekker, New York, 147-156.

[8]   Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L. and Lorito, M. (2008) Trichoderma-Plant-Pathogen Interactions. Soil Biology & Biochemistry, 40, 1-10.
https://doi.org/10.1016/j.soilbio.2007.07.002

[9]   Rollan, M., Monaco, C. and Nico, A. (1999) Effecto de la emperatura sobre la interaccion in vitro entre especies de Trichoderma y Sclerotinia sclerotiorum, S. minor y Sclerotium rolfsii. Investigationes agraria. Production y protection de vegetales, 14, 33-48.

[10]   Naár, Z. (2007) Ecological Evaluation of Factors Influencing the Soil Colonization of Antagonistic Trichoderma Species. PhD Thesis, Hungarian Academy of Sciences, Budapest.

[11]   Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. (2014) Trichoderma-Based Products and Their Widespread Use in Agriculture. Open Mycology Journal, 8, 71-126.
https://doi.org/10.2174/1874437001408010071

[12]   Kovics, G.J., Harz, P. and Naár, Z. (2001) Biological Control against Rhizoctonia Damping-off Disease of Tomato by Trichoderma Strains. Bulletin of the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Horticulture, 55-56, 63-68.

[13]   Naár, Z. and Dobos, A. (2006) Redundancy Analysis of the Influence of Metal Content and Other Edaphic Parameters on the Coexsistence of Trichoderma Species. Applied Ecology and Environmental Research, 4, 113-123.
http://www.aloki.hu/pdf/0402_113123.pdf

[14]   Oros, G., Naár, Z. and Cserháti, T. (2011) Growth Response of Trichoderma Species to Organic Solvents. Molecular Informatics, 30, 276-285.
https://doi.org/10.1002/minf.201000097

[15]   Druzhinina, I. and Kubicek, C. (2005) Species Concepts and Biodiversity in Trichoderma and Hypocrea: From Aggregate Species to Species Clusters? Journal of Zhejiang University Science B, 6, 100-112.
https://doi.org/10.1631/jzus.2005.B0100

[16]   Cumagun, C.J.R. (2014) Advances in Formulation of Trichoderma for Biocontrol. In: Gupta, V.K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I. and Tuohy M., Eds., Biotechnology and Biology of Trichoderma, Chapter 39, Elsevier, Amsterdam, 527-532.
https://doi.org/10.1016/b978-0-444-59576-8.00039-4

[17]   Oros, G. and Naár, Z. (2008) Environment Friendly Biomicrobicides and Their Use. HPO 0800405.

[18]   Oros, G. and Ujváry, I. (1999) Botanical Fungicides: Natural and Semi-Synthetic Ceveratrum Alkaloids. Pesticide Science, 55, 253-264.
https://doi.org/10.1002/(SICI)1096-9063(199903)55:3<253::AID-PS926>3.0.CO;2-6

[19]   Askew, D.J. and Laing, M.D. (1993) An Adapted Selective Medium for the Quantitative Isolation of Trichoderma Species. Plant Patholology, 42, 686-690.
https://doi.org/10.1111/j.1365-3059.1993.tb01553.x

[20]   Andrews, S. and Pitt, J.I. (1986) Selective Medium for Isolation of Fusarium Species and Dematiaceous Hyphomycetes from Cereals. Applied and Environmental Microbiology, 51, 1235-1238.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239051/pdf/aem00141-0091

[21]   Mihail, J.D. and Alcorn, S.M. (1982) Quantitative Recovery of Macrophomina phaseolina Sclerotia from Soil. Plant Disease, 66, 662-663.
https://doi.org/10.1094/PD-66-662

[22]   Conway, K.E. (1985) Selective Medium for Isolation of Pythium spp. from Soil. Plant Disease, 69, 393-395.
https://doi.org/10.1094/PD-69-393

[23]   Trujillo, E.E., Cavin, C.A. Aragaki, M. and Yoshimura, M.A. (1987) Ethanol-Potassium Nitrate Medium for Enumerating Rhizoctonia solani-like Fungi from Soil. Plant Disease, 71, 1098-1100.
https://doi.org/10.1094/PD-71-1098

[24]   Lewi, P.J. (1976) Spectral Mapping, a Technique for Classifying Biological Activity Profiles of Chemical Compounds. Arzneimittelforschung, 26, 1295-1300.

 
 
Top