Back
 OJCM  Vol.7 No.1 , January 2017
Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review
Abstract:
The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor a well-engineered composite structure. These parameters include geometry design, strain rate sensitivity, material properties, laminate design, interlaminar fracture toughness and off-axis loading conditions which are reviewed in this paper to create a comprehensive data base for researchers, engineers and scientists in the field. Each of these parameters influences the structural integrity and progressive crushing behaviour. In this extensive review each of these parameters is introduced, explained and evaluated. Construction of a well-engineered composite structure and triggering mechanism to strain rate sensitivity and testing conditions followed by failure mechanisms are extensively reviewed. Furthermore, this paper has mainly focused on experimental analysis that has been carried out on different types of FRP composites in the past two decades.
Cite this paper: Rabiee, A. and Ghasemnejad, H. (2017) Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review. Open Journal of Composite Materials, 7, 14-48. doi: 10.4236/ojcm.2017.71002.
References

[1]   DiPaolo, B.P. and Tom, J.G. (2006) A Study on an Axial Crush Configuration Response of Thin Wall, Steel Box Components: The Quasi-Static Experiments. International Journal of Solids and Structures, 43, 7752-7775.
https://doi.org/10.1016/j.ijsolstr.2006.03.028

[2]   Santosa, S. and Wierzbicki, T. (1998) Crash Behaviour of Box Columns Filled with Aluminium Honeycomb or Foam. Composite Structures, 68, 343-367.
https://doi.org/10.1016/S0045-7949(98)00067-4

[3]   Santosa, S. and Wierzbicki, T. (1999) Effect of an Ultralight Metal Filler on the Bending Collapse Behaviour of Thin Walled Prismatic Columns. International Journal of Mechanical Sciences, 41, 967-993.
https://doi.org/10.1016/S0020-7403(98)00066-6

[4]   Cheng, Q., Altenhof, W., Jin, S.Y., Powell, C. and Harte, A.M. (2006) Energy Absorption of Aluminium Foam Filled Braided Stainless Steel Tubes under Quasi-Static Tensile Loading Conditions. International Journal of Mechanical Sciences, 48, 1223-1233.
https://doi.org/10.1016/j.ijmecsci.2006.06.009

[5]   Kotzialis, C., Derdas, C. and Kostopoulos, V. (2005) Blast Behaviour of Plates with Sacrificial Cladding. 5th GRACM International Congress on Computational Mechanics, 29 June-1 July 2005, Limassol.

[6]   Guruprasad, S. and Mukherjee, A. (2000) Layered Sacrificial Claddings under Blast Loading Part II—Experimental Studies. International Journal of Impact Engineering, 24, 975-984.
https://doi.org/10.1016/S0734-743X(00)00005-1

[7]   Hanssen, A.G., Enstock, L. and Langseth M. (2002) Close-Range Blast Loading of Aluminium Foam Panels. International Journal of Impact Engineering, 27, 593-618.
https://doi.org/10.1016/S0734-743X(01)00155-5

[8]   Mosallam, A.S. and Nasr, A. (2016) Structural Performance of RC Shear Walls with Post-Construction Openings Strengthened with FRP Composite Laminates. Composite Part B: Engineering, In Press.
http://dx.doi.org/10.1016/j.compositesb.2016.06.063

[9]   James, A. (1999) Performance Comparison of Plastic Composites with Metals for Vertical Body Panel Applications. SAE Technical Paper.

[10]   Kostopoulos, V., Markopoulos, Y.P., Vlachos, D.E., Galiotis, C. and Melanitis, N.E. (2001) A Heavy Duty Composite Bridge Made of Glass Polyester Pultruded Box Beams. Proceedings of RTO Applied Vehicle Technolo-gy Panel (AVT) Specialists’ Meeting on Low Cost Composite Structures, Loen, 7-11 May 2001.

[11]   Ramakrishna, S. (1997) Microstructural Design of Composite Materials for Crashworthy Structural Applications. Materials & Design, 18, 167-173.
https://doi.org/10.1016/S0261-3069(97)00098-8

[12]   Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. (2006) The Static and Dynamic and Axial Collapse of CFRP Square Tubes: Finite Element Modelling. Composite Structures, 74, 213-225.
https://doi.org/10.1016/j.compstruct.2005.04.006

[13]   Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. (2005) On the Experimental Investigation of Crack Energy Absorption in Laminate Splaying Collapse Mode of FRP Tubular Components. Composite Structures, 70, 413-429.
https://doi.org/10.1016/j.compstruct.2004.09.002

[14]   Ramakrishna, S. and Hamada, H. (1998) Energy Absorption Characteristics of Crash Worthy Structural Composite Materials. Key Engineering Materials, 141-143, 585-619.
https://doi.org/10.4028/www.scientific.net/KEM.141-143.585

[15]   Savona, C.S. and Hogg, P.J. (2006) Effect of Fracture Toughness Properties on the Crushing of Flat Composite Plates. Composites Science and Technology, 66, 2317-2328.
https://doi.org/10.1016/j.compscitech.2005.11.038

[16]   Sebaey, T.A. and Mahdi, E. (2017) Filler Strengthening of Foam-Filled Energy Absorption Devices Using CFRP Beams. Composite Structures, 160, 1-7.
http://dx.doi.org/10.1016/j.compstruct.2016.10.049

[17]   Hull, D. (1993) A Unified Approach to Progressive Crushing of Fibre Reinforced Composite Tubes. Composites Science and Technology, 35, 231-246.

[18]   Abosbaia, A.A.S., Mahdi, E., Hamouda, A.M.S. and Sahari, B.B. (2003) Quasi-Static Axial Crushing of Segmented and Non Segmented Composite Tubes. Composite Structures, 60, 327-343.
https://doi.org/10.1016/S0263-8223(02)00341-0

[19]   Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. (2004) Crashworthy Characteristics of Axially Statically Compressed Thin-Walled Square CFRP Composite Tubes: Experimental. Composite Structures, 63, 347-360.
https://doi.org/10.1016/S0263-8223(03)00183-1

[20]   Farley, G. and Jones, R. (1992) Crushing Characteristics of Continuous Fibre Reinforced Composite Tubes. Journal of Composite Materials, 26, 37-50.
https://doi.org/10.1177/002199839202600103

[21]   Mamalis, A.G., Manolakos, D.E. and Viegelahn, G.L. (1990) Crashworthy Behaviour of Thin-Walled Tubes of Fibreglass Composite Material Subjected to Axial Loading. Journal of Composite Materials, 24, 72.
https://doi.org/10.1177/002199839002400104

[22]   Macaulay, M.A. (1987) Introduction to Impact Engineering. Chapman and Hall, USA.
https://doi.org/10.1007/978-94-009-3159-6

[23]   Bardi, F.C., Yun, H.D. and Kyriakides, S. (2003) On the Axisymmetric Progressive Crushing of Circular Tubes under Axial Compression. International Journal of Solids and Structures, 40, 3137-3155.
https://doi.org/10.1016/S0020-7683(03)00111-2

[24]   Lou, H., Yan, Y., Meng, X. and Jin, C. (2016) Progressive Failure Analysis and Energy-Absorbing Experiment of Composite Tubes under Axial Dynamic Impact. Composites Part B: Engineering, 87, 1-11.
http://dx.doi.org/10.1016/j.compositesb.2015.10.016

[25]   Fairfull, A.H. and Hull, D. (1987) Effect of Specimen Dimensions on the Specific Energy Absorption of Fibre Composite Tubes. Proceedings of ICCM-VI, 36-45.

[26]   Farely, G.L. (1986) Effect of Specimen Geometry on the Energy Absorption of Composite Materials. Journal of Composite Materials, 20, 390.
https://doi.org/10.1177/002199838602000406

[27]   Thronton, P.H. and Edwards, P.J. (1982) Energy Absorption in Composite Tubes. Journal of Composite Materials, 16, 521-545.
https://doi.org/10.1177/002199838201600606

[28]   Thronton, P.H., Harwood, J.J. and Beardmore, P. (1985) Fiber Reinforced Plastic Composites for Energy Absorption Purposes. Composites Science and Technology, 24, 275-298.
https://doi.org/10.1016/0266-3538(85)90026-0

[29]   Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. (2005) On the Response of Thin-Walled CFRP Composite Tubular Components Subjected to Static and Dynamic Axial Compressive Loading: Experimental. Composite Structures, 69, 407-420.
https://doi.org/10.1016/j.compstruct.2004.07.021

[30]   Mamalis, A.G. and Johnson, W. (1983) The Quasi-Static Crumpling of Thin-Walled Circular Cylinders and Frusta under Axial Compression. International Journal of Mechanical Sciences, 25, 713-732.
https://doi.org/10.1016/0020-7403(83)90078-4

[31]   Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifili, R., Ariffin, A.K. and Azhari, C.H. (2013) Effect of Trigger Configuration on the Crashworthiness Characteristics of Natural Silk Epoxy Composite Tubes. Composite Part B: Engineering, 55, 5-10.
http://dx.doi.org/10.1016/j.compositesb.2013.05.022

[32]   Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A. and Ioannidis, M.B. (1996) Energy Absorption Capability of Fibreglass Composite Square Frusta Subjected to Static and Dynamic Axial Collapse. Thin-Walled Structures, 25, 269-295.
https://doi.org/10.1016/0263-8231(95)00057-7

[33]   Farely, G.L. (1983) Energy Absorption of Composite Materials. Journal of Composite Materials, 17, 167.
https://doi.org/10.1177/002199838301700307

[34]   Hamada, H., Coppola, J.C., Hull, D., Maekawa, Z. and Sato, H. (1992) Comparison of Energy Absorption of Carbon/Epoxy and Carbon/PEEK Composite Tubes. Composites, 23, 245-252.
https://doi.org/10.1016/0010-4361(92)90184-V

[35]   Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. (2005) On the Experimental Investigation of Crash Energy Absorption in Laminate Splaying Collapse Mode of FRP Tubular Components. Composite Structures, 70, 413-429.
https://doi.org/10.1016/j.compstruct.2004.09.002

[36]   Thornton, P.H. (1989) The Crush Behavior of Pultruded Tubes at High Strain Rates. Journal of Composite Materials, 24, 22.

[37]   Farley, G.L. and Jones, R.M. (1992) Crushing Characteristics of Composite Tubes with ‘‘Near Elliptical” cross Sections. Journal of Composite Materials, 26, 1252.
https://doi.org/10.1177/002199839202601203

[38]   Elgalai, A.M., Mahdi, E., Hamouda, A.M.S. and Sahari, B.S. (2004) Crushing Response of Composite Corrugated Tubes to Quasi-Static Axial Loading. Composite Structures, 66, 665-671.
https://doi.org/10.1016/j.compstruct.2004.06.002

[39]   Zarei, H., Kroger, M. and Albertsen, H. (2008) An Experimental and Numerical Crashworthiness Investigation of Thermoplastic Composite Crash Boxes. Composite Structures, 85, 245-257.
https://doi.org/10.1016/j.compstruct.2007.10.028

[40]   Abdewi, E.F., Sulaiman, S., Hamouda, A.M.S. and Mahdi, E. (2008) Quasi-Static Axial and Lateral Crushing of Radial Corrugated Composite Tubes. Thin-Walled Structures, 46, 320- 332.
https://doi.org/10.1016/j.tws.2007.07.018

[41]   Carroll, M., Ellyin, F., Kujawski, D. and Chiu, A.S. (1995) The Rate-Dependent Behaviour of ±55 Filament-Wound Glass-Fibre/Epoxy Tubes under Biaxial Loading. Composites Science and Technology, 55, 391-403.
https://doi.org/10.1016/0266-3538(95)00119-0

[42]   Abosbaia, A.A.S., Mahdi, E., Hamouda, A.M.S., Sahari, B.B. and Mokhtar, A.S. (2005) Energy Absorption Capability of Laterally Loaded Segmented Composite Tubes. Composite Structures, 70, 356-373.
https://doi.org/10.1016/j.compstruct.2004.08.039

[43]   Mahdi, E., Hamouda, A.M.S., Sahari, B.B. and Khalid, Y.A. (2003) Effect of Hybridisation on Crushing Behaviour of Carbon/Glass Fibre Circular-Cylindrical Shells. Journal of Materials Processing Technology, 132, 49-57.
https://doi.org/10.1016/S0924-0136(02)00260-1

[44]   Palanivelu, S., Paepegem, W., Van Degrieck, J., Kakogiannis, D., Van Ackeren, J., Van Hemelrijck, D., et al. (2010) Comparative Study of the Quasi-Static Energy Absorption of Small-Scale Composite Tubes with Different Geometrical Shapes for Use in Sacrificial Cladding Structures. Polymer Testing, 29, 381-396.
https://doi.org/10.1016/j.polymertesting.2010.01.003

[45]   Palanivelu, S., Van Paepegem, W., Degrieck, J., Vantomm, J., Kakogiannis, D., Van Ackeren, J., et al. (2011) Crushing and Energy Absorption Performance of Different Geometrical Shapes of Small-Scale Glass/Polyester Composite Tubes under Quasi-Static Loading Conditions. Composite Structures, 93, 992-1007.
https://doi.org/10.1016/j.compstruct.2010.06.021

[46]   Farely, G.L. (1986) Effect of Fibre and Matrix Maximum Strain Rate on the Energy Absorption of Composite Materials. Journal of Composite Materials, 20, 322.
https://doi.org/10.1177/002199838602000401

[47]   Desjardins, S.P. et al. (1989) Aircraft Crash Survival Design Guide. USAA VSCOM TR 89-D-22A-E, Vol I-IV, December.

[48]   Thornton, P.H. and Jeryan, R.A. (1987) Composite Structure for Automotive Energy Management. Presented at Autocom’87, Dearbon, 1-4 June 1987.

[49]   Beardmore, P. and Johnson, C.F. (1986) The Potential for Composites in Structural Automotive Applications. Composites Science and Technology, 26, 251-281.
https://doi.org/10.1016/0266-3538(86)90002-3

[50]   Matthews, F.L., Davies, G.A.O., Hitchings, D. and Soutis, C. (2000) Finite Element Modelling of Composite Materials and Structures. Woodhead Published Limited, USA.

[51]   Mahdi, E., Hamouda, A.M.S. and Sen, A.C. (2004) Quasi-Static Crushing of Hybrid and Non-Hybrid Natural Fibre Composite Solid Cones. Composite Structures, 66, 647-663.
https://doi.org/10.1016/j.compstruct.2004.06.001

[52]   Meidell, A. (2009) Computer Aided Material Selection for Circular Tubes Designed to Resist Axial Crushing. Thin-Walled Structures, 47, 962-969.
https://doi.org/10.1016/j.tws.2009.02.003

[53]   Jimenez, M.A., Miravete, A., Larrode, E. and Revuelta, D. (2000) Effect of Trigger Geometry on Energy Absorption in Composite Profiles. Composite Structures, 48, 107-111.
https://doi.org/10.1016/S0263-8223(99)00081-1

[54]   Bambach, M.R. (2010) Axial Capacity and Crushing of Thin-Walled Metal, Fibre-Epoxy and Composite Metal-Fibre Tubes. Thin-Walled Structures, 48, 440-452.
https://doi.org/10.1016/j.tws.2010.01.006

[55]   Mahdi, E., Homouda, A.M.S., Mokhtar, A.S. and Majid, D.L. (2005) Many Aspects to Improve Damage Tolerance of Collapsible Composite Energy Absorber Devices. Composite Structures, 67, 175-187.
https://doi.org/10.1016/j.compstruct.2004.09.010

[56]   Ghasemnejad, H., Hadavinia, H. and Aboutorabi, A. (2010) Effect of Delamination Failure in Crashworthiness Analysis of Hybrid Composite Box Structures. Materials & Design, 31, 1105-1116.
https://doi.org/10.1016/j.matdes.2009.09.043

[57]   Hadavinia, H. and Ghasemnejad, H. (2009) Effects of Mode-I and Mode-II Interlaminar Fracture Toughness on the Energy Absorption of CFRP Twill/Weave Composite Box Sections. Composite Structures, 89, 303-314.
https://doi.org/10.1016/j.compstruct.2008.08.004

[58]   Farley, G.L. (1983) Energy Absorption of Composite Materials. Composite Materials, 17, 167.
https://doi.org/10.1177/002199838301700307

[59]   Thornton, P.H. (1979) Energy Absorption in Composite Structures. Journal of Composite Materials, 13, 247.
https://doi.org/10.1177/002199837901300308

[60]   Schmueser, D.W. and Wickliffe, L.E. (1987) Impact Energy Absorption of Continuous Fiber Composite Tubes. Journal of Engineering Materials and Technology, 109, 72-77.
https://doi.org/10.1115/1.3225937

[61]   Farley, G.L. and Jones, R.M. (1992) Crushing Characteristics of Continuous Fibre-Reinforced Composite Tubes. Journal of Composite Materials, 26, 37.
https://doi.org/10.1177/002199839202600103

[62]   Thornton, P.H. and Edwards, P.J. (1982) Energy Absorption in Composite Tubes. Journal of Composite Materials, 16, 521.
https://doi.org/10.1177/002199838201600606

[63]   (1990) PE Fibre Reinforcement Prevents Crush. News Article in British Plastics and Rubber, 10 January 1990.

[64]   Hamada, H. and Ramakrishna, S. (1995) Scaling Effects in the Energy Absorption of Carbon-Fiber/PEEK Composite Tubes. Composites Science and Technology, 23, 211-221.
https://doi.org/10.1016/0266-3538(95)00081-X

[65]   Hamada, H., Ramakrishna, S. and Satoh, H. (1995) Crushing Mechanism of Carbon Fibre/ PEEK Composite Tubes. Composites, 26, 749-755.
https://doi.org/10.1016/0010-4361(95)98195-Q

[66]   Nilson, S. (1991) Polyetheretherketone Matrix Resins and Composites. International Encyclopedia of Composites, 6, 282.

[67]   Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A. and Ioannidis, M.B. (1997) The Static and Dynamic Axial Crumbling of Thin-Walled Fibreglass Composite Square Tubes. Composites Part B, 28, 439-451.
https://doi.org/10.1016/S1359-8368(96)00066-2

[68]   Naik, N.K. and Ganesh, V.K. (1992) Prediction of On-Axes Elastic Properties of Plain Weave Fabric Composites. Composite Science and Technology, 45, 135-152.
https://doi.org/10.1016/0266-3538(92)90036-3

[69]   Ishikawa, T. and Chou, T.W. (1982) Stiffness and Strength of Woven Fabric Composites. Journal of Materials Science, 17, 3211-3220.
https://doi.org/10.1007/BF01203485

[70]   Yang, Y.C. and Harding, J. (1990) A Numerical Micromechanics Analysis of the Mechanical Properties of a Plain Weave Composite. Computers and Structures, 36, 839-844.
https://doi.org/10.1016/0045-7949(90)90154-T

[71]   Whitcomb, J.D. (1991) Three-Dimensional Stress Analysis of Plain Weave Composites. In: O’Brien, T.K., Ed., Composite Materials and Fracture (Vol. 3), ASTM STP 1110, American Society for Testing and Materials, Philadelphia, USA, 417-438.
https://doi.org/10.1520/stp17730s

[72]   Santulli, C. (2000) Impact Damage Evaluation in Woven Composites Using Acoustic and Thermoelastic Techniques. PhD Thesis, Liverpool University.

[73]   Riva, E. (2005) Mechanics of Woven Compo-sites. PhD Thesis, University of Parma, 97-98.

[74]   Farley, G.L. (1986) Effect of Specimen Geometry on the Energy Absorption of Composite Materials. Journal of Composite Materials, 20, 390.
https://doi.org/10.1177/002199838602000406

[75]   Abdewi, E.F. (2016) FRP Composite Tube Subjected to Quasi-Static Axial and Lateral Compression Loadings. Reference Module in Materials Science and Materials Engineering.
http://dx.doi.org/10.1016/B978-0-12-803581-8.04081-9

[76]   Lau, S.T.W., Said, M.R. and Yaakob, M.Y. (2012) On the Effect of Geometrical Designs and Failure Modes in Composite Axial Crushing: A Literature Review. Composite Structures, 94, 803-812.
http://dx.doi.org/10.1016/j.compstruct.2011.09.013

[77]   Mahdi, E. and Sebaey, T.A. (2014) An Experimental Investigation into Crushing Behavior of Radially Stiffened GFRP Composite Tubes. Thin-Walled Structures, 76, 8-13.
https://doi.org/10.1016/j.tws.2013.10.018

[78]   Mahdi, E., Hamouda, A.M.S., Sahari, B.B. and Khalid, Y.A. (2003) Effect of Residual Stresses in Filament Wound Laminated Conical Shell. Journal of Materials Processing Technology, 138, 291-296.
https://doi.org/10.1016/S0924-0136(03)00087-6

[79]   Alkateb, M., Mahdi, E., Hamouda, A.M.S. and Hamdan, M.M. (2004) On the Energy Absorption Capability of Axially Crushed Composite Elliptical Cones. Composite Structures, 66, 495-501.
https://doi.org/10.1016/j.compstruct.2004.04.078

[80]   Yan, L.B. and Chouw, N. (2013) Crashworthiness Characteristics of Flax Fibre Reinforced Epoxy Tubes for Energy Absorption Application. Materials & Design, 51, 629-640.
https://doi.org/10.1016/j.matdes.2013.04.014

[81]   Abdewi, E.F., Sulaiman, S., Hamouda, A.M.S. and Mahdi, E. (2006) Effect of Geometry on the Crushing Behaviour of Laminated Corrugated Composite Tubes. Journal of Materials Processing Technology, 172, 394-399.
https://doi.org/10.1016/j.jmatprotec.2005.07.017

[82]   Paruka, P. and Shah, M.K.M. (2013) Influence of Axial and Oblique Impact Loads on Crush Response Properties of Square Tube Structures Made with FRP Pultruded Composites. Procedia Engineering, 68, 572-578.
https://doi.org/10.1016/j.proeng.2013.12.223

[83]   Mahdi, E., Hamouda, A.M.S., Sahari, B.B. and Khalid, Y.A. (2003) Experimental Quasi Static Crushing of Cone-Tube-Cone Composite System. Compos Part B, 34, 285-302.
https://doi.org/10.1016/S1359-8368(02)00102-6

[84]   Mahdi, E., Sahari, B.B., Hamouda, A.M.S. and Khalid, Y.A. (2001) An Experimental Investigation into Crushing Behaviour of Filament-Wound Laminated Cone-Cone Intersection Composite Shell. Composite Structures, 51, 211-219.
https://doi.org/10.1016/S0263-8223(00)00132-X

[85]   Czaplicki, M.J., Robertson, R.E. and Thorton, P.H. (1991) Comparison of Bevel and Tulip Triggered Pultruded Tubes for Energy Absorption. Composites Science and Technology, 40, 31.
https://doi.org/10.1016/0266-3538(91)90041-M

[86]   Thuis, H.G.S.J. and Metz, V.H. (1993) The Influence of Trigger Configurations and Laminate Lay-Up on the Failure Mode of Composite Crush Cylinders. Composite Structures, 25, 37-43.
https://doi.org/10.1016/0263-8223(93)90148-J

[87]   Hamada, H. and Ramakrishna, S. (1995) Scaling Effects in the Energy Absorption of Carbon-Fiber/PEEK Composite Tubes. Composites Science and Technology, 55, 211-221.
https://doi.org/10.1016/0266-3538(95)00081-X

[88]   Dormegnie, D., Coutellier, D., Delsart, D. and Deletombe, E. (2003) Studies of Scale Effects for Crash on Laminated Structures. Applied Composite Materials, 10, 49-61.
https://doi.org/10.1023/A:1021196811432

[89]   Thronton, P.H. (1979) Energy Absorption in Composite Structures. Journal of Composite Materials, 13, 247.
https://doi.org/10.1177/002199837901300308

[90]   Othman, A., Abdullah, S., Ariffin, A.K. and Mohamed, N.A.N. (2016) Investigating the Crushing Behavior of Quasi-Static Oblique Loading on Polymeric Foam Filled Pultruded Composite Square Tubes. Composite Part B: Engineering, 95, 493-514.
http://dx.doi.org/10.1016/j.compositesb.2016.04.027

[91]   Palanivelu, S., Van Paepegem, W., Degrieck, J., Van Ackeren, J., Kakogiannis, D., Van Hemelrijck, D., et al. (2010) Experimental Study on the Axial Crushing Behaviour of Pultruded Composite Tubes. Polymer Testing, 29, 224-234.
https://doi.org/10.1016/j.polymertesting.2009.11.005

[92]   Saito, H., Chirwa, E.C., Inai, R. and Hamada, H. (2002) Energy Absorption of Braiding Pultrusion Process Composite Rods. Composite Structures, 55, 407-417.
https://doi.org/10.1016/S0263-8223(01)00160-X

[93]   Farley, G.L. (1991) The Effect of Crushing Speed on the Energy-Absorption Capability of Composite Tubes. Journal of Composite Materials, 25, 1314.

[94]   Zhou, G. (1998) The Use of Experimentally-Determined Impact Force as a Damage Measure in Impact Damage Resistance and Tolerance of Composite Structures. Composite Structures, 42, 375-382.
https://doi.org/10.1016/S0263-8223(98)00089-0

[95]   Cantwell, W.J. and Morton, J. (1991) The Impact Resistance of Composite Materials—A Review. Composites, 22, 347-362. https://doi.org/10.1016/0010-4361(91)90549-V

[96]   Abrate, S. (1991) Impact on Laminated Composite Materials. Applied Mechanics Reviews, 44, 155-190.
https://doi.org/10.1115/1.3119500

[97]   Liu, D. and Malvern, L.E. (1987) Matrix Cracking in Impacted Glass/Epoxy Plates. Journal of Composite Materials, 21, 594-609.
https://doi.org/10.1177/002199838702100701

[98]   Davies, G.A.O., Hitchings, D. and Zhou, G. (1996) Impact Damage and Residual Strengths of Woven Fabric Glass/Polyester Laminates. Composites Part A, 27A, 1147-1156.
https://doi.org/10.1016/1359-835X(96)00083-8

[99]   Cantwell, W.J. and Morton, J. (1989) Comparison of the Low and High Velocity Impact Response of CFRP. Composites, 20, 545-551.
https://doi.org/10.1016/0010-4361(89)90913-0

[100]   Mitrevski, T., Marshall, I.H., Thomson, R.S. and Jones, R. (2006) Low-Velocity Impacts on Preloaded GFRP Specimens with Various Impactor Shapes. Composite Structures, 76, 209-217.
https://doi.org/10.1016/j.compstruct.2006.06.033

[101]   Aktasb, M., Atas, C., Icten, B.M. and Karakuzu, R. (2009) An Experimental Investigation of the Impact Response of Composite Laminates. Composite Structures, 87, 307-313.
https://doi.org/10.1016/j.compstruct.2008.02.003

[102]   Hosseinzadeh, R., Shokrieh, M.M. and Lessard, L. (2006) Damage Behaviour of Fiber Reinforced Composite Plates Subjected to Drop-Weight Impacts. Composites Science and Technology, 66, 61-68.
https://doi.org/10.1016/j.compscitech.2005.05.025

[103]   Sutherland, L.S. and Soares, C.G. (2005) Impact on Low Fibre-Volume, Glass Polyester Rectangular Plates. Composite Structures, 68, 13-22.
https://doi.org/10.1016/j.compstruct.2004.02.010

[104]   Evci, C. and Gülgec, M. (2012) An Experimental Investigation on the Impact Response of Composite Materials. International Journal of Impact Engineering, 43, 40-51.
https://doi.org/10.1016/j.ijimpeng.2011.11.009

[105]   Freitas, M. and Reis, L. (1998) Failure Mechanisms on Composite Specimens Subjected to Compression after Impact. Composite Structures, 42, 365-373.
https://doi.org/10.1016/S0263-8223(98)00081-6

[106]   Evci, C. and Gülgec, M. (2014) Effective Damage Mechanisms and Performance Evaluation of Ceramic Composite Armors Subjected to Impact Loading. Journal of Composite Materials, 48, 3215-3236.
https://doi.org/10.1177/0021998313508594

[107]   Sutherland, L.S. and Soares, C.G. (2003) The Effects of Test Parameters on the Impact Response of Glass Reinforced Plastic Using an Experimental Design Approach. Composites Science and Technology, 63, 1-18.
https://doi.org/10.1016/S0266-3538(02)00090-8

[108]   Mitrevski, T., Marshall, I.H. and Thomson, R. (2006) The Influence of Impactor Shape on the Damage to Composite Laminates. Composite Structures, 76, 116-122.
https://doi.org/10.1016/j.compstruct.2006.06.017

[109]   Richardson, M.O.W. and Wisheart, M.J. (1996) Review of Low Velocity Impact Properties of Composite Materials. Composites Part A, 27A, 1123-1131.
https://doi.org/10.1016/1359-835X(96)00074-7

[110]   Shyr, T.W. and Pan, Y.H. (2003) Impact Resistance and Damage Characteristics of Composite Laminates. Composite Structures, 62, 193-203.
https://doi.org/10.1016/S0263-8223(03)00114-4

[111]   Davies, G.A.O. and Zhang, X. (1994) Impact Damage Prediction in Carbon Composite Structure. International Journal of Impact Engineering, 16, 149-170.
https://doi.org/10.1016/0734-743X(94)00039-Y

[112]   Belingardi, G. and Vadori, R. (2002) Low Velocity Impact Tests of Laminate Glass-Fiber-Epoxy Matrix Composite Material Plates. International Journal of Impact Engineering, 27, 213-229.
https://doi.org/10.1016/S0734-743X(01)00040-9

[113]   Schoeppner, G.A. and Abrate, S. (2000) Delamination Threshold Loads for Low Velocity Impact on Composite Laminates. Composites Part A, 31, 903-915.
https://doi.org/10.1016/S1359-835X(00)00061-0

[114]   Yang, F.J. and Cantwell, W.J. (2010) Impact Damage Initiation in Composite Materials. Composites Science and Technology, 70, 336-342.
https://doi.org/10.1016/j.compscitech.2009.11.004

[115]   Liu, D. (2004) Characterization of Impact Properties and Damage Process of Glass/Epoxy Composite Laminates. Journal of Composite Materials, 38, 1425-1442.
https://doi.org/10.1177/0021998304042741

[116]   Quaresimin, M., Ricotta, M., Martello, L. and Mian, S. (2013) Energy Absorption in Composite Laminates under Impact Loading. Composites Part B, 44, 133-140.
https://doi.org/10.1016/j.compositesb.2012.06.020

[117]   Zhang, L. (2001) Engineering Plasticity and Impact Dynamic. World Scientific.
https://doi.org/10.1142/4857

[118]   Abrate, S. (1998) Impact on Composite Structures. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511574504

[119]   Timoshenko, S. (1959) Theory of Plates and Shells. McGraw Hill, New York.

[120]   Davies, G. and Morton, J. (1984) Structural Impact and Crashworthiness. 2 Volumes, Elsevier.

[121]   Kim, K.J. and Yu, T.X. (1998) Impact Response and Dynamic Failure of Composites and Laminate Materials. TTP, Trans-Tech Publications.

[122]   Sierakowski, R.L. and Newaz, G.M. (1995) Damage Tolerance in Advanced Composites. Technomic Publishing Company.

[123]   Wu, H.Y. and Springer, G.S. (1988) Impact Induced Stresses, Strains and Delaminations in Composite Plates. Journal of Composite Materials, 22, 533-560.
https://doi.org/10.1177/002199838802200603

[124]   Pang, S.S., Yang, C. and Zhao, Y. (1995) Impact Response of Single-Lap Composite Joints. Composites Engineering, 5, 1011-1027.
https://doi.org/10.1016/0961-9526(95)00003-6

[125]   Hancox, N.L. (2000) An Overview of the Impact Behaviour of Fibre-Reinforced Composites. In: Reid, S.R. and Zhou, G., Eds., Impact Behaviour of Fibre-Reinforced Composite Materials and Structures, Woodhead Publishing Ltd., Cambridge.

[126]   Mamalis, A.G., Robinson, M., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B. and Carruthers, J. (1997) Crashworthy Capability of Composite Material Structures. Composite Structures, 37, 109-134.
https://doi.org/10.1016/S0263-8223(97)80005-0

[127]   Thornton, P.H. (1990) The Crush of Fiber-Reinforced Plastics. In: Cheremisinoff, N.P., Ed., Handbook of Ceramics and Composites Volume 1: Synthesis and Properties, Marcel Dekker Inc., New York, 307-337.

[128]   Wang, Y., Feng, J., Wu, J. and Hu, D. (2016) Effects of Fiber Orientation and Wall Thickness on Energy Absorption Characteristics of Carbon-Reinforced Composite Tubes under Different Loading Conditions. Composite Structures, 153, 356-368.
http://dx.doi.org/10.1016/j.compstruct.2016.06.033

[129]   Berthelot, J.M. (1999) Composite Materials, Mechanical Behaviour and Structural Analysis. Spring-Verlag, New York.
https://doi.org/10.1007/978-1-4612-0527-2

[130]   Farley, G.L. and Jones, R.M. (1992) Analogy for the Effect of Material and Geometrical Variables on Energy Absorption Capability of Composite Tubes. Journal of Composite Materials, 26, 78.
https://doi.org/10.1177/002199839202600105

[131]   Jacob, G.C., Fellers, J.F., Simunivic, S. and Starbuck, M. (2002) Energy Absorption in Polymer Composites for Automotive Crashworthiness. Journal of Composite Materials, 36, 813.
https://doi.org/10.1177/0021998302036007164

[132]   Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A. and Ioannidis, M.B. (1996) Analysis of Failure Mechanisms Observed in Axial Collapse of Thin-Walled Circular Fibreglass Composite Tubes. Thin-Walled Structures, 24, 335-352.
https://doi.org/10.1016/0263-8231(95)00042-9

[133]   Mamalis, A.G., Manolakos, D.E., Demosthenous, G.A. and Ioannidis, M.B. (1996) The Static and Dynamic Collapse of Fibreglass Composite Automotive Frame Rails. Composite Structures, 34, 77-90.
https://doi.org/10.1016/0263-8223(95)00134-4

[134]   Czaplicki, M.J., Robertson, R.E. and Thornton, P.H. (1990) Non-Axial Crushing of E-Glass/ Polyester Pultruded Tubes. Journal of Composite Materials, 24, 1077-1100.
https://doi.org/10.1177/002199839002401004

[135]   Song, H.-W. and Du, X.-W. (2002) Off-Axis Crushing of GFRP Tubes. Composites Science and Technology, 62, 2065-2073.
https://doi.org/10.1016/S0266-3538(02)00152-5

[136]   Saito, H., Inai, R., Yokoyama, A. and Hamada, H. (2000) Basic Study of Progressive Crushing Mechanism. Key Engineering Materials, 177-180, 321-326.
https://doi.org/10.4028/www.scientific.net/KEM.177-180.321

[137]   Warrior, N.A., Turner, T.A., Robitaille, F. and Rudd, C.D. (2004) The Effect of Interlaminar Toughening Strategies on the Energy Absorption of Composite Tubes. Composites Part A, 35, 431-437.
https://doi.org/10.1016/j.compositesa.2003.11.001

[138]   Jacob, G.C., Fellers, J.F., Simunovic, S. and Starbuck, M. (2002) Energy Absorption in Polymer Composites for Automotive Crashworthiness. Journal of Composite Materials, 36, 813-850.
https://doi.org/10.1177/0021998302036007164

[139]   Cauchi Savona, S. and Hogg, P.J. (2006) Effect of Fracture Thoughness Properties on the Crushing of Flat Composite Plates. Composites Science and Technology, 66, 2317-2328.
https://doi.org/10.1016/j.compscitech.2005.11.038

[140]   Solaimurugan, S. and Velmurugan, R. (2007) Influence of Fibre Orientation and Stacking Sequence on Petalling of Glass/Polyester Composite Cylindrical Shell under Axial Compression. International Journal of Solids and Structures, 44, 6999-7020.
https://doi.org/10.1016/j.ijsolstr.2007.03.025

[141]   Solaimurugan, S. and Velmurugan, R. (2007) Progressive Crushing of Stitched Glass/ Polyester Composite Cylindrical Shells. Composites Science and Technology, 67, 422-437.
https://doi.org/10.1016/j.compscitech.2006.09.002

[142]   Ghasemnejad, H., Blackman, B.R.K., Hadavinia, H. and Sudall, B. (2008) Experimental Studies on Fracture Characterisation and Energy Absorption of GFRP Composite Box Structure. Composite Structures, 88, 253-261.
https://doi.org/10.1016/j.compstruct.2008.04.006

[143]   Ghasemnejad, H. and Hadavinia, H. (2010) Off-Axis Crashworthiness Characteristic of Woven Glass/Epoxy Composite Box Structures. Journal of Reinforced Plastics and Composites, 29, 2306-2330.
https://doi.org/10.1177/0731684409347807

[144]   Ghafari-Namini, N. and Ghasemnejad, H. (2012) Effect of Natural Stitched Composites on the Crashworthiness of Box Structures. Materials & Design, 39, 484-494.
https://doi.org/10.1016/j.matdes.2012.03.025

[145]   Rabiee, A. and Ghasemnejad, H. (2016) Effect of Multi Stitched Locations on High Speed Crushing of Composite Tubular Structures. Composite Part B, 100, 164-175.
https://doi.org/10.1016/j.compositesb.2016.06.068

 
 
Top