JBM  Vol.5 No.1 , January 2017
Correlation between Serum Neutrophil Gelatinase Associated Lipocalin and Burn Severity: A Pilot Study
Abstract: The severity of an initial burn injury is critical for determining the treatment plan and prognosis of burn patients. Here, we measured serum neutrophil gelatinase-associated lipocalin (NGAL) levels to determine whether NGAL can be used as a biomarker for severity of burn injuries. A study of the demographic, clinical, and laboratory markers for various organ damage was performed at Bestian Burn Center (n = 10 healthy people, n = 31 patients). NGAL and organ damage marker levels were measured in 31 patients with severe burns within 2 - 3 days following their admission to the intensive care unit. Serum NGAL level of the expired patients was 788.5 (685.0 - 998.0) pg/mL, whereas that of the discharged patients was 421.2 (356.2 - 480.6) pg/mL, showing that the initial serum NGAL level can be used to estimate mortality. We also determined the correlation between serum NGAL level and the currently used severity markers (total body surface area burned and abbreviated burn severity index) and confirmed that serum NGAL level could be used as a severity marker. We also found that serum NGAL level was correlated with damage of organs such as the liver, kidney, heart, and respiratory organs in patients with severe burns.
Cite this paper: Lee, S. , Lee, S. , Choi, Y. , Ahn, S. , Yoon, C. and Lee, J. (2017) Correlation between Serum Neutrophil Gelatinase Associated Lipocalin and Burn Severity: A Pilot Study. Journal of Biosciences and Medicines, 5, 11-25. doi: 10.4236/jbm.2017.51002.

[1]   Baumann, H. and Gauldie, J. (1994) The Acute Phase Response. Immunology Today, 15, 74-80.

[2]   Flower, D.R., North, A.C. and Sansom, C.E. (2000) The Lipocalin Protein Family: Structural and Sequence Overview. Biochimicaet Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1482, 9-24.

[3]   Church, D., Elsayed, S., Reid, O., Winston, B. and Lindsay, R. (2006) Burn Wound Infections. Clinical Microbiology Reviews, 19, 403-434.

[4]   Orman, M.A., Nguyen, T.T., Ierapetritou, M.G., Berthiaume, F. and Androulakis, I.P. (2011) Comparison of the Cytokine and Chemokine Dynamics of the Early Inflammatory Response in Models of Burn Injury and Infection. Cytokine, 55, 362-371.

[5]   Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N. and Strong, R.K. (2002) The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent That Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell, 10, 1033-1043.

[6]   Flo, T.H., Smith, K.D., Sato, S., Rodriguez, D.J., Holmes, M.A., Strong, R.K., Akira, S. and Aderem, A. (2004) Lipocalin 2 Mediates an Innate Immune Response to Bacterial Infection by Sequestrating Iron. Nature, 432, 917-921.

[7]   Zhang, J., Wu, Y., Zhang, Y., LeRoith, D., Bernlohr, D.A. and Chen, X. (2008) The Role of Lipocalin 2 in the Regulation of Inflammation in Adipocytes and macrophages. Molecular Endocrinology, 22, 1416-1426.

[8]   Chakraborty, S., Kaur, S., Guha, S. and Batra, S.K. (2012) The Multifaceted Roles of Neutrophil Gelatinase Associated Lipocalin (NGAL) in Inflammation and Cancer. Biochimicaet Biophysica Acta (BBA)-Reviews on Cancer, 1826, 129-169.

[9]   Guo, H., Jin, D., Zhang, Y., Wright, W., Bazuine, M., Brockman, D.A., Bernlohr, D. A. and Chen, X. (2010) Lipocalin-2 Deficiency Impairs Thermogenesis and Potentiates Diet-Induced Insulin Resistance in Mice. Diabetes, 59, 1376-1385.

[10]   Jun, L.S., Siddall, C.P. and Rosen, E.D. (2011) A Minor Role for Lipocalin 2 in High-Fat Diet-Induced Glucose Intolerance. American Journal of Physiology-Endocrinology and Metabolism, 301, E825-E835.

[11]   Cruz, D.N., de Cal, M., Garzotto, F., Perazella, M.A., Lentini, P., Corradi, V., Piccinni, P. and Ronco, C. (2010) Plasma Neutrophil Gelatinase-Associated Lipocalin Is an Early Biomarker for Acute Kidney Injury in an Adult ICU Population. Intensive Care Medicine, 36, 444-451.

[12]   Roudkenar, M.H., Kuwahara, Y., Baba, T., Roushandeh, A.M., Ebishima, S., Abe, S., Ohkubo, Y. and Fukumoto, M. (2007) Oxidative Stress Induced Lipocalin 2 Gene Expression: Addressing Its Expression under the Harmful Conditions. Journal of Radiation Research, 48, 39-44.

[13]   Vemula, M., Berthiaume, F., Jayaraman, A. and Yarmush, M.L. (2004) Expression Profiling Analysis of the Metabolic and Inflammatory Changes Following Burn Injury in Rats. Physiological Genomics, 18, 87-98.

[14]   Roudkenar, M.H., Halabian, R., Ghasemipour, Z., Roushandeh, A.M., Rouhbakhsh, M., Nekogoftar, M., Kuwahara, Y., Fukumoto, M. and Shokrgozar, M.A. (2008) Neutrophil Gelatinase-Associated Lipocalin Acts as a Protective Factor against H2O2 Toxicity. Archives of Medical Research, 39, 560-566.

[15]   Roudkenar, M.H., Halabian, R., Roushandeh, A.M., Nourani, M.R., Masroori, N., Ebrahimi, M., Nikogoftar, M., Rouhbakhsh, M., Bahmani, P., Najafabadi, J. A. and Shokrgozar, M.A. (2009) Lipocalin 2 Regulation by Thermal Stresses: Protective Role of Lcn2/NGAL against Cold and Heat Stresses. Experimental Cell Research, 315, 3140-3151.

[16]   Borkham-Kamphorst, E., van de Leur, E., Zimmermann, H.W., Karlmark, K.R., Tihaa, L., Haas, U., Tacke, F., Berger, T., Mak, T.W. and Weiskirchen, R. (2013) Protective Effects of Lipocalin-2 (LCN2) in Acute Liver Injury Suggest a Novel Function in Liver Homeostasis. Biochimica et Biophysica Acta, 1832, 660-673.

[17]   Hong, D.Y., Lee, J.H., Park, S.O., Baek, K.J. and Lee, K.R. (2013) Plasma Neutrophil Gelatinase-Associated Lipocalin as Early Biomarker for Acute Kidney Injury in Burn Patients. Journal of Burn Care and Research, 34, e326-e332.

[18]   Monafo, W.W. and Bessey, P. (1993) Pathophysiology of Burn Shock. In: Rylah, L., Ed., Critical Care of the Burned Patient, Cambridge University Press, Cambridge, 1-14.

[19]   Anlatici, R., Özerdem, Ö.R., Dalay, C., Kesiktas, E., Acartürk, S. and Seydaoglu, G. (2002) A Retrospective Analysis of 1083 Turkish Patients with Serious Burns: Part 2: Burn Care, Survival and Mortality. Burns, 28, 239-243.

[20]   Devarajan, P. (2010) Neutrophil Gelatinase-Associated Lipocalin: A Promising Biomarker for Human Acute Kidney Injury. Biomarkers, 4, 265-280.

[21]   Gokdemir, M.T., Aldemir, M., Sogut, O., Guloglu, C., Sayhan, M.B., Orak, M. and Ustundag, M. (2012) Clinical Outcome of Patients with Severe Burns Presenting to the Emergency Department. Journal of Current Surgery, 2, 17-23.

[22]   Forster, N.A., Zingg, M., Haile, S.R., Künzi, W., Giovanoli, P. and Guggenheim, M. (2011) 30 Years Later—Does the ABSI Need Revision? Burns, 37, 958-963.

[23]   Mustonen, K.M. and Vuola, J. (2008) Acute Renal Failure in Intensive Care Burn Patients (ARF in Burn Patients). Journal of Burn Care and Research, 29, 227-237.

[24]   Holm, C., Hörbrand, F., von Donnersmarck, G.H. and Mühlbauer, W. (1999) Acute Renal Failure in Severely Burned Patients. Burns, 25, 171-178.

[25]   Chrysopoulo, M.T., Jeschke, M.G., Dziewulski, P., Barrow, R.E. and Herndon, D.N. (1999) Acute Renal Dysfunction in Severely Burned Adults. Journal of Trauma and Acute Care Surgery, 46, 141-144.

[26]   Yavuz, S., Anarat, A., Acartürk, S., Dalay, A.C., Kesiktas, E., Yavuz, M. and Acartürk, T.O. (2014) Neutrophil Gelatinase Associated Lipocalin as an Indicator of Acute Kidney Injury and Inflammation in Burned Children. Burns, 40, 648-654.

[27]   Haase, M., Bellomo, R., Devarajan, P., Schlattmann, P., Haase-Fielitz, A. and Group, N. (2009) Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-Analysis. American Journal of Kidney Diseases, 54, 1012-1024.

[28]   Kjeldsen, L., Johnsen, A.H., Sengeløv, H. and Borregaard, N. (1993) Isolation and Primary Structure of NGAL, A Novel Protein Associated with Human Neutrophil Gelatinase. Journal of Biological Chemistry, 268, 10425-10432.

[29]   Bundgaard, J.R., Sengelov, H., Borregaard, N. and Kjeldsen, L. (1994) Molecular Cloning and Expression of a cDNA Encoding NGAL: A Lipocalin Expressed in Human Neutrophils. Biochemical and Biophysical Research Communications, 202, 1468-1475.

[30]   Elneihoum, A.M., Falke, P., Axelsson, L., Lundberg, E., Lindgärde, F. and Ohlsson, K. (1996) Leukocyte Activation Detected by Increased Plasma Levels of Inflammatory Mediators in Patients with Ischemic Cerebrovascular Diseases. Stroke, 27, 1734-1738.

[31]   Mishra, J., Ma, Q., Prada, A., Mitsnefes, M., Zahedi, K., Yang, J., Barasch, J. and Devarajan, P. (2003) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology, 14, 2534-2543.

[32]   Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M.M., Ma, Q., Kelly, C., Ruff, S.M., Zahedi, K., Saho, M., Bean, J., Mori, K., Barasch, J. and Devarajan, P., (2005) Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Biomarker for Acute Renal Injury after Cardiac Surgery. The Lancet, 365, 1231-1238.

[33]   Gwira, J.A., Wei, F., Ishibe, S., Ueland, J.M., Barasch, J. and Cantley, L.G. (2005) Expression of Neutrophil Gelatinase-Associated Lipocalin Regulates Epithelial Morphogenesis in Vitro. Journal of Biological Chemistry, 280, 7875-7882.

[34]   Cowland, J.B., Sørensen, O.E., Sehested, M. and Borregaard, N. (2003) Neutrophil Gelatinase-Associated Lipocalin Is Up-Regulated in Human Epithelial Cells by IL-1β, but Not by TNF-α. The Journal of Immunology, 171, 6630-6639.

[35]   Jayaraman, A., Roberts, K.A., Yoon, J., Yarmush, D.M., Duan, X., Lee, K. and Yarmush, M.L. (2005) Identification of Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Discriminatory Marker of the Hepatocyte-Secreted Protein Response to IL-1β: A Proteomic Analysis. Biotechnology and Bioengineering, 91, 502-515.

[36]   Hemdahl, A.L., Gabrielsen, A., Zhu, C., Eriksson, P., Hedin, U., Kastrup, J., Thoren, P. and Hansson, G.K. (2006) Expression of Neutrophil Gelatinase-Associated Lipocalin in Atherosclerosis and Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 136-142.

[37]   Cowland, J.B. and Borregaard, N. (1997) Molecular Characterization and Pattern of Tissue Expression of the Gene for Neutrophil Gelatinase-Associated Lipocalin from Humans. Genomics, 45, 17-23.

[38]   Friedl, A., Stoesz, S.P., Buckley, P. and Gould, M.N. (1999) Neutrophil Gelatinase-Associated Lipocalin in Normal and Neoplastic Human Tissues. Cell Type-Specific Pattern of Expression. The Histochemical Journal, 31, 433-441.

[39]   Devireddy, L.R., Teodoro, J.G., Richard, F.A. and Green, M.R. (2001) Induction of Apoptosis by a Secreted Lipocalin That Is Transcriptionally Regulated by IL-3 Deprivation. Science, 293, 829-834.

[40]   Van de Goot, F., Krijnen, P.A., Begieneman, M.P., Ulrich, M.M., Middelkoop, E. and Niessen, H.W. (2009) Acute Inflammation Is Persistent Locally in Burn Wounds: A Pivotal Role for Complement and C-Reactive Protein. Journal of Burn Care and Research, 30, 274-280.

[41]   Helanova, K., Spinar, J. and Parenica, J. (2014) Diagnostic and Prognostic Utility of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with Cardiovascular Diseases-Review. Kidney and Blood Pressure Research, 39, 623-629.

[42]   Meldrum, K.K., Hile, K., Meldrum, D.R., Crone, J.A., Gearhart, J.P. and Burnett, A.L. (2002) Simulated Ischemia Induces Renal Tubular Cell Apoptosis through a Nuclear Factor-κB Dependent Mechanism. The Journal of Urology, 168, 248-252.