JBM  Vol.5 No.1 , January 2017
Forskolin Modulates the Inhibitory Effect of C-Type Natriuretic Peptide on Hypoxia-Induced Atrial Dynamics and Hypoxia Inducible Factor 1 Alpha Activity
Abstract: Our study investigated effects of C-type natriuretic peptide (CNP) on atrial dynamics and hypoxia inducible factor 1 alpha (HIF-1α) activity in perfused beating rat atria, under hypoxic conditions. Hypoxia significantly increased the levels of HIF-1α, concomitant with decreased trial dynamics. CNP (0.1 μmol/L) further decreased atrial dynamics under hypoxia and suppressed hypoxia-induced stimulation of HIF-1α expression. An adenylylcyclase (AC) activator, forskolin (0.1 μmol/L), significantly up-regulated atrial phosphodiesterase subtype 3A (PDE 3A) protein without affecting hypoxia-induced dynamics. In the presence of forskolin, the inhibitory effects of CNP on hypoxia-induced atrial dynamics and HIF-1α levels were significantly attenuated. Forskolin also prevented hypoxia-induced downregulation of PDE3A protein. These findings suggested that CNP inhibited atrial dynamics and HIF-1α activity in the isolated perfused beating rat atria under hypoxic conditions. Furthermore, both effects were modulated by the AC activator forskolin, through activation of CNP-PDE 3A signaling.
Cite this paper: Guan, C. , Jia, Y. , Bian, C. , Zhang, B. , Ding, D. and Cui, X. (2017) Forskolin Modulates the Inhibitory Effect of C-Type Natriuretic Peptide on Hypoxia-Induced Atrial Dynamics and Hypoxia Inducible Factor 1 Alpha Activity. Journal of Biosciences and Medicines, 5, 1-10. doi: 10.4236/jbm.2017.51001.

[1]   van der Pouw Kraan, T.C., Bernink, F.J., Yildirim, C., Koolwijk, P., Baggen, J.M., Timmers, L., Beek, A.M., Diamant, M., Chen, W.J., van Rossum, A.C., van Royen, N., Horrevoets, A.J. and Appelman, Y.E. (2014) Systemic Toll-Like Receptor and Interleukin-18 Pathway Activation in Patients with Acute ST Elevation Myocardial Infarction. Journal of Molecular and Cellular Cardiology, 67, 94-102.

[2]   Mirtschink, P. and Krek, W. (2016) Hypoxia-Driven Glycolytic and Fructolytic Metabolic Programs: Pivotal to Hypertrophic Heart Disease. Biochimica et Biophysica Acta, 1863, 1822-1828.

[3]   Guo, Q., Xu, H., Yang, X., Zhao, D., Liu, S., Sun, X. and Huang, J.A. (2016) Notch Activation of Ca2+-Sensing Receptor Mediates Hypoxia-Induced Pulmonary Hypertension. Hypertension Research.

[4]   Mottet, D., Ruys, S.P., Demazy, C., Raes, M. and Michiels, C. (2005) Role for Casein Kinase 2 in the Regulation of HIF-1 Activity. International Journal of Cancer, 117, 764-774.

[5]   Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408.

[6]   Eckle, T., Köhler, D., Lehmann, R., El Kasmi, K. and Eltzschig, H.K. (2008) Hypoxia-Inducible Factor-1 Is Central to Cardioprotection: A New Paradigm for Ischemic Preconditioning. Circulation, 118, 166-175.

[7]   Bullen, J.W., Tchernyshyov, I., Holewinski, R.J., DeVine, L., Wu, F., Venkatraman, V., Kass, D.L., Cole, R.N., Van Eyk, J. and Semenza, G.L. (2016) Protein Kinase A-Dependent Phosphorylation Stimulates the Transcriptional Activity of Hypoxia-Inducible Factor 1. Science Signaling, 9, ra56.

[8]   McNamee, E.N., Vohwinkel, C. and Eltzschig, H.K. (2016) Hydroxylation-Independent HIF-1α Stabilization through PKA: A New Paradigm for Hypoxia Signaling. Science Signaling, 9, fs11.

[9]   Zhang, Q.L., Cui, B.R., Li, H.Y., Li, P., Hong, L., Liu, L.P., Ding, D.Z. and Cui, X. (2013) MAPK and PI3K Pathways Regulate Hypoxia-Induced Atrial Natriuretic Peptide Secretion by Controlling HIF-1 Alpha Expression in Beating Rabbit Atria. Biochemical and Biophysical Research Communications, 438, 507-512.

[10]   Anttila, K., Streng, T., Pispa, J., Vainio, M. and Nikinmaa, M. (2016) Hypoxia Exposure and B-Type Natriuretic Peptide Release from Langendorff Heart of Rats. Acta Physiologica.

[11]   Hong, L., Xi, J., Zhang, Y., Tian, W., Xu, J., Cui, X. and Xu, Z. (2012) Atrial Natriuretic Peptide Prevents the Mitochondrial Permeability Transition Pore Opening by Inactivating Glycogen Synthase Kinase 3β via PKG and PI3K in Cardiac H9c2 Cells. European Journal of Pharmacology, 695, 13-19.

[12]   Hopkins, W.E., Chen, Z., Fukagawa, N.K., Hall, C., Knot, H.J. and LeWinter, M.M. (2004) Increased Atrial and Brain Natriuretic Peptides in Adults with Cyanotic Congenital Heart Disease: Enhanced Understanding of the Relationship between Hypoxia and Natriuetic Peptide Secretion. Circulation, 109, 2872-2877.

[13]   Rosón, M.I., Toblli, J.E., Della Penna, S.L., Gorzalczany, S., Pandolfo, M., Cavallero, S. and Fernández, B.E. (2006) Renal Protective Role of Atrial Natriuretic Peptide in Acute Sodium Overload-Induced Inflammatory Response. American Journal of Nephrology, 26, 590-601.

[14]   Cao, X., Xia, H.Y., Zhang, T., Qi, L.C., Zhang, B.Y., Cui, R., Chen, X., Zhao, Y.R. and Li, X.Q. (2015) Protective Effect of Lyophilized Recombinant Human Brain Natriuretic Peptide on Renal Ischemia/Reperfusion Injury in Mice. Genetics and Molecular Research, 14, 13300-13311.

[15]   Liu, L.P., Hong, L., Yu, L., Li, H.Y., Ding, D.Z., Jin, S.J. and Cui, X. (2012) Ouabain Stimulates Atrial Natriuretic Peptide Secretion via the Endothelin-1/ET(B) Receptor-Mediated Pathway in Beating Rabbit Atria. Life Sciences, 90, 793-798.

[16]   Bian, C., Ding, D., Jin, H., Liu, L., Hong, L., Cui, B. and Cui, X. (2016) EndogenousEndothelin-1 Regulates Hypoxia-Induced Atrial Natriuretic Peptide Secretion by Activating the MAPK/ERK and PI3K/Akt Signaling Pathways in Isolated Beating Rabbit Atria. Journal of Biosciences & Medicines, 4, 45-53.

[17]   Tan, T., Scholz, P.M. and Weiss, H.R. (2010) Hypoxia Inducible Factor-1 Improves the Negative Functional Effects of Natriuretic Peptide and Nitric Oxide Signaling in Hypertrophic Cardiac Myocytes. Life Sciences, 87, 9-16.

[18]   Lee, S.J., Kim, S.Z., Cui, X., Kim, S.H., Lee, K.S., Cheng, Y.J. and Cho, K.W. (2000) C-Type Natriuretic Peptide Inhibits ANP Secretion and Atrial Dynamics in Perfused Atria: NPR-B-cGMP Signaling. American Journal of Physiology—Heart and Circulatory Physiology, 278, H208-H221.

[19]   Ding, D.Z., Cui, X., Jin, X.N., Lan, Y., Liu, L.P. and Hong, L. (2010) Effect of C-Type Natriuretic Peptide on Atrial Dynamics in Beating Rabbit Atria and Mechanism of Action. Journal of Jilin University, 36, 23-26.

[20]   Wen, J.F., Cui, X., Jin, J.Y., Kim, S.M., Kim, S.Z., Kim, S.H., Lee, H. and Cho, K.W. (2004) High and Low Gain Switches for Regulation of cAMP Efflux Concentration: Distinct Roles for Particulate GC- and Soluble GC-cGMP-PDE3 Signaling in Rabbit Atria. Circulation Research, 94, 936-943.

[21]   Cui, X., Wen, J.F., Jin, H., Li, D., Jin, J.Y., Kim, S.H., Kim, S.Z., Lee, H.S. and Cho, K.W. (2002) Subtype-Specific Roles of cAMP Phosphodiesterases in Regulation of Atrial Natriuretic Peptide Release. European Journal of Pharmacology, 451, 295- 302.

[22]   Shahid, M. and Nicholson, C.D. (1990) Comparison of Cyclic Nucleotide Phosphodiesterase Isozymes in Rat and Rabbit Ventricular Myocardium: Positive Inotropic and Phosphodiesterase Inhibitory Effects of Org 30029, Milrinone and Rolipram. Naunyn-Schmiedeberg’s Archives of Pharmacology, 342, 698-705.

[23]   Fischmeister, R. and Hartzell, H.C. (1991) Cyclic AMP Phosphodiesterases and Ca2+ Current Regulation in Cardiac Cells. Life Sciences, 48, 2365-2376.

[24]   Beavo, J.A. (1995) Cyclic Nucleotide Phosphodiesterases: Functional Implications of Multiple Isoforms. Physiological Reviews, 75, 725-748.

[25]   Lakics, V., Karran, E.H. and Boess, F.G. (2010) Quantitative Comparison of Phosphodiesterase mRNA Distribution in Human Brain and Peripheral Tissues. Neuropharmacology, 59, 367-374.