Health  Vol.3 No.9 , September 2011
In vitro examining the existing prognoses how TBP binds to TATA with SNP associated with human diseases
We in vitro examined the existing prognoses of the dissociation constant, KD, between ТАТА- Binding Protein (TBP) and ТАТА box with single nucleotide polymorphism (SNP) associated with human diseases. Five SNPs of the genes for cytochrome P450 2A6 (associated with lung cancer), β-globin (associated with β-thalassemia), mannose binding lectin (associated with variable immunodeficiency), superoxide dismutase 1 (associated with amyotrophic lateral sclerosis) and triosephosphate isomerase (associated with anemia) fell within the range of –ln(KD;M/KD;WT) between –1.5 and –1 (here KD;WT and KD;M denote the normal ТАТА box and with SNP). The mea-surements using EMSA demonstrated that: 1) all the predictions stating that the affinity between ТВР and ТАТА boxes with SNPs would be reduced were correct; 2) the departures of three predictions from the measurements fell within the confidence interval; 3) all the predictions consistently underestimated actual mutational damage caused to ТАТА boxes with SNPs (a < 0.05; binomial law) and two of these predictions did so significantly (a < 0.05, Student’s t-test). This consistent underestimation seems to be associated with the damage to the context that modulates ТВP/ТАТА affinity, for example, the contact between the nucleosomal histone H3-Н4 dimer and the core promoter immediately near ТАТА boxes.

Cite this paper
nullDrachkova, I. , Ponomarenko, P. , Arshinova, T. , Ponomarenko, М. , Suslov, V. , Savinkova, L. and Kolchanov, N. (2011) In vitro examining the existing prognoses how TBP binds to TATA with SNP associated with human diseases. Health, 3, 577-583. doi: 10.4236/health.2011.39099.
[1]   Sherry, S.T., Ward, M. and Sirotkin, K. (1999) DbSNP database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Research, 9, 677-679.

[2]   Day, I.N. (2010) DbSNP in the detail and copy number complexities. Human Mutation, 31, 2-4. doi:10.1002/humu.21149

[3]   Batley, J. and Edwards, D. (2009) Mining for SNPs and SSRs using SNPServer, dbSNP and SSR taxonomy tree. Methods in Molecular Biology, 537, 303-321. doi:10.1007/978-1-59745-251-9_15

[4]   Collaco, J.M. and Cutting, G.R. (2008) Update on gene modifiers in cystic fibrosis. Current Opinion in Pulmonary Medicine, 14, 559-566. doi:10.1097/MCP.0b013e3283121cdc

[5]   Faiger, H., Ivanchenko, M., Cohen, I. and Haran, T.E. (2006) TBP flanking sequences: Asymmetry of binding, long-range effects and consensus sequences. Nucleic Acids Research, 34, 104-119. doi:10.1093/nar/gkj414

[6]   Ponomarenko, P.M., Savinkova, L.K., Drachkova, I.A., Lysova, M.V., Arshinova, T.V., Ponomarenko, M.P. and Kolchanov, N.A. (2008) A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism. Doklady Biochemistry and Biophysics, 419, 88-92. doi:10.1134/S1607672908020117

[7]   Hahn, S., Buratowski, S., Sharp, P.A. and Guarente, L. (1989) Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and non nonconsensus DNA sequences. Proceedings of the National Academy of Sciences of USA, 86, 5718-5722. doi:10.1073/pnas.86.15.5718

[8]   Coleman, R.A. and Pugh, B.F. (1995) Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA. The Journal of Biological Chemistry, 270, 13850-13859. doi:10.1074/jbc.270.23.13850

[9]   Bucher, P. (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. Journal of Molecular Biology, 212, 563-578. doi:10.1016/0022-2836(90)90223-9

[10]   Juo, Z.S., Chiu, T.K., Leiberman, P.M., Baikalov, I., Berk, A.J. and Dickerson, R.E. (1996) How proteins recognize the TATA box. Journal of Molecular Biology, 261, 239-254. doi:10.1006/jmbi.1996.0456

[11]   Powel, R., Parkhurst, K. and Parkhurst, L. (2002) Comparison of TATA-binding protein recognition of a variant and consensus DNA promoters. The Journal of Biological Chemistry, 277, 7776-7784. doi:10.1074/jbc.M110147200

[12]   Savinkova, L.K., Drachkova, I.A., Ponomarenko, M.P., Lysova, M.V., Arshinova, T.V. and Kolchanov, N.A. (2007) Interaction between the recombinant TATA-binding protein and the TATA-boxes of the mammalian gene promoters. Ecological Genetics, 5, 44-49.

[13]   Sokolenko, A.A., Sandomirski, I.I. and Savinkova, L.K. (1996) Interaction of yeast TATA-binding protein with promoters short sites. Molecular Biology, 30, 279-285.

[14]   Ponomarenko, M.P., Ponomarenko, J.V., Frolov, A.S., Podkolodny, N.L., Savinkova, L.K., Kolchanov, N.A. and Overton, G.C. (1999) Identification of sequence dependent DNA features correlating to activity of DNA sites interacting with proteins. Bioinformatics, 15, 687-703. doi:10.1093/bioinformatics/15.7.687

[15]   Delgadillo, R.F., Whittington, J.E., Parkhurst, L.K. and Parkhurst, L.J. (2009) The TATA-binding protein core domain in solution variably bends TATA sequences via a three-step binding mechanism. Biochemistry, 48, 1801- 1809. doi:10.1021/bi8018724

[16]   Suslov, V.V., Ponomarenko, P.M., Efimov, V.M., Savinkova, L.K., Ponomarenko, M.P. and Kolchanov, N.A. (2010) SNPs in the HIV-1 TATA box and the AIDS pandemic. Journal of Bioinformatics and Computational Biology, 8, 607-625. doi:10.1142/S0219720010004677

[17]   Savinkova, L.K., Ponomarenko, M.P., Ponomarenko, P.M., Drachkova, I.A., Lysova, M.V., Arshinova, T.V. and Kolchanov, N.A. (2009) TATA box polymorphisms in human gene promoters and associated hereditary pathologies. Biochemistry, 74, 117-129. doi:10.1134/S0006297909020011

[18]   Suslov, V.V., Ponomarenko, P.M., Ponomarenko, M.P., Drachkova, I.A., Arshinova, T.V., Savinkova, L.K. and Kolchanov, N.A. (2010) TATA box polymorphisms in genes of commercial and laboratory animals and plants associated with selectively valuable traits. Russian Journal of Genetics, 46, 394-403. doi:10.1134/S1022795410040022

[19]   Ponomarenko, P.M., Ponomarenko, M.P., Drachkova, I.A., Lysova, M.V., Arshinova, T.V., Savinkova, L.K. and Kolchanov, N.A. (2009) Prognosis of affinity change of the TATA-binding protein to TATA-boxes upon polymorphisms of the human gene promoter TATA boxes. Molecular Biology (Mosc), 43, 512-520.

[20]   Peterson, M.G., Tanese, N., Pugh, B.F. and Tjian, R. (1990) Functional domains and upstream activation properties of cloned human TATA-binding protein. Science, 248, 1625-1630. doi:10.1126/science.2363050

[21]   Pugh, F. (1995) Purification of the human TATA-binding protein, TBP. Methods in Molecular Biology, 37, 359-367. doi:10.1385/0-89603-288-4:359

[22]   Drachkova, I.A., Lysova, M.V., Repkova, M.N., Prokuda, O.V., Sokolenko, A.A., Arshinova, T.V., Kobzev, V.F., Iamkovoi, V.I. and Savinkova, L.K. (2005) Interaction of proteins from general transcription complex RNA polymerase II with oligoribonucleotides. Molecular Biology, 39, 139-146.

[23]   Imbalzano, A.N., Kwon, H., Green, M.R. and Kingston, R.E. (1994) Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature, 370, 481-485. doi:10.1038/370481a0

[24]   Ioshikhes, I., Trifonov, E.N. and Zhang, M.Q. (1999) Periodical distribution of transcription factor sites in promoter regions and connection with chromatin structure. Proceedings of the National Academy of Sciences of USA, 96, 2891-2895. doi:10.1073/pnas.96.6.2891

[25]   Richmond, T.J. and Davey, C.A. (2003) The structure of DNA in the nucleosome core. Nature, 423, 145-150. doi:10.1038/nature01595

[26]   Godde, J.S., Nakatani, Y. and Wolffe, A.P. (1995) The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA. Nucleic Acids Research, 23, 4557-4564. doi:10.1093/nar/23.22.4557

[27]   Kel, A.E., Kel-Margoulis, O.V., Babenko, V. and Wingender, E. (1999) Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. Journal of Molecular Biology, 288, 353-376. doi:10.1006/jmbi.1999.2684

[28]   Gunbin, K.V., Suslov, V.V. and Kolchanov, N.A. (2008) Molecular-genetic systems of development: Functional dynamics and molecular evolution. Biochemistry, 73, 219-230. doi:10.1134/S0006297908020144

[29]   Strunnikov, V.A. and Vyshinsky, I.M. (1991) Realization variation in silkworm. In: Problems in Genetics and the Theory of Evolution, Nauka, Novosibirsk, 99-114.

[30]   Trut, L.N. (1997) D. K. Beliaev’s evolutionary concept—Ten years later. Russian Journal of Genetics, 33, 1060-1068.

[31]   De Jong, H. (2002) Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology, 9, 67-103. doi:10.1089/10665270252833208

[32]   Agalioti, T., Chen, G. and Thanos, D. (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell, 111, 381-392. doi:10.1016/S0092-8674(02)01077-2

[33]   Watanabe, M., Zingg, B.C. and Mohrenweiser, H.W. (1996) Molecular analysis of a series of alleles in humans with reduced activity at the triosephosphate isomerase locus. The American Journal of Human Genetics, 58, 308-316.

[34]   Koch, A., Melbye, M., S?rensen, P., Homoe, P., Madsen, H.O., Molbak, K. Hansen, C.H., Andersen, L.H., Hahn, G.W. and Garred, P. (2001) Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. The Journal of the American Medical Association, 285, 1316-1321. doi:10.1001/jama.285.10.1316

[35]   Israels, J., Frakking, F.N., Kremer, L.C., Offringa, M., Kuijpers, T.W. and Van de Wetering, M.D. (2009) Mannose-binding lectin and infection risk in newborns: A systematic review. Archives in Disease in Childhood: Fetal & Neonatal Edition, 5, F452-F461.

[36]   Eisen, D.P. and Minchinton, R.M. (2003) Impact of mannose-binding lectin on susceptibility to infectious diseases. Clinical Infectious Diseases, 37, 1496-1505. doi:10.1086/379324

[37]   Verga Falzacappa, M.V., Segat, L., Puppini, B., Amoroso, A. and Crovella, S. (2004) Evolution of the mannose-binding lectin gene in primates. Genes & Immunity, 5, 653-661. doi:10.1038/sj.gene.6364140

[38]   Seyfarth, J., Garred, P. and Madsen, H.O. (2005) The “involution” of mannose-binding lectin. Human Molecular Genetics, 14, 2859-2869. doi:10.1093/hmg/ddi318

[39]   Cervera, A., Planas, A.M., Justicia, C., Urra, X., Jensenius, J.C., Torres, F., Lozano, F. and Chamorro, A. (2010) Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS ONE, 5, e8433. doi:10.1371/journal.pone.0008433

[40]   Sziller, I., Babula, O., Hupuczi, P., Nagy, B., Rigó, B., Szabó, G., Papp, Z., Linhares, I.M. and Witkin, S.S. (2007) Mannose-binding lectin (MBL) codon 54 gene polymorphism protects against development of pre-eclampsia, HELLP syndrome and pre-eclampsia-associated intrauterine growth restriction. Molecular Human Reproduction, 13, 281-285. doi:10.1093/molehr/gam003

[41]   Boldt, A.B., Culpi, L., Tsuneto, L.T., De Souza, R., Kun, J.F. and Petzl-Erler, M.L. (2006) Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Human Immunology, 67, 722-734. doi:10.1016/j.humimm.2006.05.009

[42]   Pitarque, M., Von Richter, O., Oke, B., Berkkan, H., Oscarson, M. and Ingelman-Sundberg, M. (2001) Identification of a single nucleotide polymorphism in the TATA box of the CYP2A6 gene: Impairment of its promoter activity. Biochemical and Biophysical Research Communications, 292, 455-460. doi:10.1006/bbrc.2001.4990

[43]   Fei, Y.J., Stoming, T.A., Efremov, G.D., Battacharia, R., Gonzalez-Redondo, J.M., Altay, C., Gurgey, A. and Huisman, T.H. (1988) Beta-thalassemia due to a T―A mutation within the ATA box. Biochemical and Biophysical Research Communications, 153, 741-747. doi:10.1016/S0006-291X(88)81157-4

[44]   Niemann, S., Broom, W.J. and Brown, R.H. Jr. (2007) Analysis of a genetic defect in the TATA box of the SOD1 gene in a patient with familial amyotrophic lateral sclerosis. Muscle & Nerve, 36, 704-707. doi:10.1002/mus.20855