Back
 JAMP  Vol.4 No.12 , December 2016
Designing Sensors Using Nano-Junctions
Abstract: Nanowire field effect transistors can be modeled for ultrasensitive charge detection based bio- or chemical sensors. As critical dimensions of the nanowire sensor can be of the same order of size of biological molecules or chemical species yielding exceptional sensing possibilities. In addition, the large surface/volume ratio will give high sensitivities simply because surface effects dominate over bulk properties. Thus, we modeled Si nanowire with different geometries in the different chemical environment using NEGF approach. To analyze the performance, the sensitivity of Si nanowire with different cross sections including circular, rectangular, and triangular is derived by two definitions. It is calculated that the sensitivity of Si nanowire with different structures is a function of geometrical parameters and doping density. It is illustrated that the sensitivity varies inversely with cross-section area, doping density, and also the length of nanowire.
Keywords: SINWs, Doping, NEGF, DFT
Cite this paper: Lamba, V. and Garg, O. (2016) Designing Sensors Using Nano-Junctions. Journal of Applied Mathematics and Physics, 4, 2247-2253. doi: 10.4236/jamp.2016.412217.
References

[1]   Cui, Y. and Lieber, C.M. (2001) Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science, 291, 851-853.
https://doi.org/10.1126/science.291.5505.851

[2]   Craighead, H.G. (2000) Nanoelectromechanical Systems. Science, 290, 1532-1535.
https://doi.org/10.1126/science.290.5496.1532

[3]   Paulose, M., Grimes, C.A. Varghese, O.K. and Dickey, E.C. (2002) Self-Assembled Fabrication of Aluminum-Silicon Nanowire Networks. Applied Physics Letters, 81, 153-155.
https://doi.org/10.1063/1.1492005

[4]   Dequesnes, M., Rotkin, S. and Aluru, N.R. (2002) Calculation of Pull-In Voltagesfor Carbon-Nano-Tube-Based Nano-Electro-Mechanical Switches. Nanotechnology, 13, 120-131.

[5]   Tang, Z., Xu, Y., Li, G. and Aluru, N.R. (2005) Physical Models for Coupled Electromechanical Analysis of Silicon Nano-Electro-Mechanical Systems. Journal of Applied Physics, 97, 114304.
https://doi.org/10.1063/1.1897483

[6]   Tadmor, E.B., Ortiz, M. and Philips, R. (1995) Quasicontinuum Analysis of Defects in Solids. Philosophical Magazine A, 73, 1529-1563.
https://doi.org/10.1080/01418619608243000

[7]   Tang, Z. and Aluru, N.R. (2008) Multiscale Mechanical Analysis of Silicon Nanostructures by Combined Finite Temperature Models. Computer Methods in Applied Mechanics and Engineering, 197, 3215-3224.
https://doi.org/10.1016/j.cma.2007.11.018

[8]   Tang, Z., Zhao, H., Li, G. and Aluru, N.R. (2006) Finite-Temperature Quasi-Continuum Method for Multiscale Analysis of Silicon Nanostructures. Physical Review B, 74, Article ID: 064110.
https://doi.org/10.1103/PhysRevB.74.064110

[9]   Medic (2003) Two Dimensional Device Simulation Program, 2003. Synopsis, Version 2003.

[10]   Nair, P.R. and Alam, M.A. (2006) Simulation of Nanowire Bio Sensors. Proceedings of 64th Device Research Conference, 183-184.
https://doi.org/10.1109/DRC.2006.305048

[11]   Nogueira, F., Castro, A. and Marques, M.A.L. (2003) A Tutorial on Density Functional Theory. In: Fiolhais, C., Nogueira, F. and Marques, M.A.L., Eds., A Primer in Density Functional Theory, Springer, Berlin, 218-256.

[12]   Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M. and Reed, M.A., (2007) Label-Free Immunodetection with CMOS-Compatible Semiconducting Nanowires. Nature, 445, 519-523.
https://doi.org/10.1038/nature05498

[13]   Wang, J., Palecek, D., Nielsen, P.E., Rivas, G., Cai, X., Shiraishi, H., Dontha, N., Luo, D. and Farias, P.A.M. (1996) Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors. Journal of the American Chemical Society, 118, 7667-7670.
https://doi.org/10.1021/ja9608050

[14]   Nair, P.R. and Alam, M.A. (2006) Performance Limits of Nanobiosensors. Applied Physics Letters, 88, Article ID: 233120.

[15]   Datta, S. (1995) Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511805776

[16]   AtomistixToolKit Version 2.0. Atomistix A/S.
www.atomistix.com

[17]   Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstaete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M. and Allen, D.C. (2002) First-Principles Computation of Material Properties: The ABINIT Software Project. Computational Materials Science, 25, 478-492.
https://doi.org/10.1016/S0927-0256(02)00325-7

[18]   Perdew, J.P. and Zunger, A. (1981) Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 23, 5048-5079.
https://doi.org/10.1103/PhysRevB.23.5048

[19]   Li, C.P., Lee, C.S., Ma, X.L., Wang, N., Zhang, R.Q. and Lee, S.T. (2003) Growth Direction and Cross-Sectional Study of Silicon Nanowires. Advanced Materials, 15, 607-609.
https://doi.org/10.1002/adma.200304409

[20]   Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A. (2003) Thermal Conductivity of Individual Silicon Nanowires. Applied Physics Letters, 83, 2934-2936.
https://doi.org/10.1063/1.1616981

 
 
Top