Back
 JIS  Vol.8 No.1 , January 2017
A Robust Chaos-Based Image Cryptosystem with an Improved Key Generator and Plain Image Sensitivity Mechanism
Abstract: In this paper, we propose an effective gray image cryptosystem containing Arnold cat map for pixel permutation and an improved Logistic map for the generation of encryption keys to be used for pixel modification. Firstly, a new chaotic map is designed to show better performance than the standard one in terms of key space range, complexity and uniformity. Generated secret key is not only sensitive to the control parameters and initial condition of the improved map but also strongly depend on the plain image characteristic which provides an effective resistance against statistical and differential attacks. Additionally, to get higher encryption strength of the cryptosystem, both confusion and diffusion processes are performed with different keys in every iterations. Theoretical analysis and simulation results confirm that the proposed algorithm has superior security and effectively encrypts and decrypts the gray images as well.
Cite this paper: Oğraş, H. and Türk, M. (2017) A Robust Chaos-Based Image Cryptosystem with an Improved Key Generator and Plain Image Sensitivity Mechanism. Journal of Information Security, 8, 23-41. doi: 10.4236/jis.2017.81003.
References

[1]   Liu, Q., Li, P.-Y., Zhang, M.-C., Sui, Y.-X. and Yang, H.-J. (2015) A Novel Image Encryption Algorithm Based on Chaos Maps with Markov Properties. Communications in Nonlinear Science and Numerical Simulation, 20, 506-515. https://doi.org/10.1016/j.cnsns.2014.06.005

[2]   Chen, J.-X., Zhu, Z.-L., Fu, C., Yu, H. and Zhang, L.-B. (2015) A Fast Chaos-Based Image Encryption Scheme with a Dynamic State Variables Selection Mechanism. Communications in Nonlinear Science and Numerical Simulation, 20, 846-860.
https://doi.org/10.1016/j.cnsns.2014.06.032

[3]   Wang, Y., Wong, K.-W., Liao, X. and Chen, G. (2011) A New Chaos-Based Fast Image Encryption Algorithm. Applied Soft Computing, 11, 514-522.
https://doi.org/10.1016/j.asoc.2009.12.011

[4]   Zhu, H., Zhao, C. and Zhang, X. (2013) A Novel Image Encryption-Compression Scheme Using Hyper-Chaos and Chinese Remainder Theorem. Signal Processing: Image Communication, 28, 670-680. https://doi.org/10.1016/j.image.2013.02.004

[5]   Ye, R. (2011) A Novel Chaos-Based Image Encryption Scheme with an Efficient Permutation-Diffusion Mechanism. Optics Communications, 284, 5290-5298.
https://doi.org/10.1016/j.optcom.2011.07.070

[6]   Zhu, H., Zhao, C., Zhang, X. and Yang, L. (2014) An Image Encryption Scheme Using Generalized Arnold Map and Affine Cipher. Optik, 125, 6672-6677.
https://doi.org/10.1016/j.ijleo.2014.06.149

[7]   Som, S. and Sen, S. (2013) A Non-Adaptive Partial Encryption of Grayscale Images Based on Chaos. Procedia Technology, 10, 663-671. https://doi.org/10.1016/j.protcy.2013.12.408

[8]   Yoon, J.W. and Kim, H. (2010) An Image Encryption Scheme with a Pseudorandom Permutation Based on Chaotic Maps. Communications in Nonlinear Science and Numerical Simulation, 15, 3998-4006. https://doi.org/10.1016/j.cnsns.2010.01.041

[9]   Zhu, Z.-L., Zhang, W., Wong, K.-W. and Yu, H. (2011) A Chaos-Based Symmetric Image Encryption Scheme Using a Bit-Level Permutation. Information Sciences, 181, 1171-1186.
https://doi.org/10.1016/j.ins.2010.11.009

[10]   Patidar, V., Pareek, N.K., Purohit, G. and Sud, K.K. (2011) A Robust and Secure Chaotic Standard Map Based Pseudorandom Permutation-Substitution Scheme for Image Encryption. Optics Communications, 284, 4331-4339. https://doi.org/10.1016/j.optcom.2011.05.028

[11]   Cruz-Hernandez, M.A.C., Abundiz-Perez, F., Lopez-Gutierez, R.M. and Acosta Del Campo, O.R. (2015) A RGB Image Encryption Algorithm Based on Total Plain Image Characteristics and Chaos. Signal Processing, 109, 119-131. https://doi.org/10.1016/j.sigpro.2014.10.033

[12]   Ye, R. and Guo, W. (2014) An Image Encryption Scheme Based on Chaotic Systems with Changeable Parameters. International Journal of Computer Network and Information Security, 4, 37-45. https://doi.org/10.5815/ijcnis.2014.04.05

[13]   Zhang, L.Y., Li, C., Wong, K.-W., Shu, S. and Chen, G. (2012) Cryptanalyzing a Chaos-Based Image Encryption Algorithm Using Alternate Structure. The Journal of Systems and Software, 85, 2077-2085. https://doi.org/10.1016/j.jss.2012.04.002

[14]   Jeng, F.-G., Huang, W.-L. and Chen, T.-H. (2015) Cryptanalysis and Improvement of Two Hyper-Chaos-Based Image Encryption Schemes. Signal Processing, 34, 45-51.
https://doi.org/10.1016/j.image.2015.03.003

[15]   Tu, G., Liao, X. and Xiang, T. (2013) Cryptanalysis of a Color Image Encryption Algorithm Based on Chaos. Optik, 124, 5411-5415. https://doi.org/10.1016/j.ijleo.2013.03.113

[16]   Rhouma, R. and Belghith, S. (2008) Cryptanalysis of a New Image Encryption Algorithm Based on Hyper-Chaos. Physics Letters A, 372, 5973-5978.
https://doi.org/10.1016/j.physleta.2008.07.057

[17]   Guo, W., Wang, X., He, D. and Cao, Y. (2009) Cryptanalysis on a Parallel Keyed Hash Function Based on Chaotic Maps. Physics Letters A, 373, 3201-3206.
https://doi.org/10.1016/j.physleta.2009.07.016

[18]   Xue, H., Wang, S. and Meng, X. (2013) Study on One Modified Chaotic System Based on Logistic Map. Research Journal of Applied Sciences, Engineering and Technology, 5, 898-904.

[19]   Marton, K., Suciu, A., Sacarea, C. and Cret, O. (2012) Generation and Testing of Random Numbers for Cryptographic Applications. Proceedings of the Romanian Academy, 13, 368-377.

[20]   Pande, A. and Zambreno, J. (2013) A Chaotic Encryption Scheme for Real-Time Embedded Systems: Design and Implementation. Telecommunication Systems, 52, 551-561.

[21]   Hathal, H.M., Abdulhussein, R.A. and Ibrahim, S.K. (2014) Lyapunov Exponent Testing for AWGN Generator System. Communications & Network, 6, 201-208.
https://doi.org/10.4236/cn.2014.64022

[22]   Rukhin, A., Soto, J., Nechvatal, J., Smid, M., et al. (2010) A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22 rev1, 2-40.

 
 
Top