[1] Taylor, G.I. (1921) Diffusion by Continuous Movement. Proceedings of the Royal Society A, 20, 196-211.
[2] Richardson, L.F. (1926) Atmospheric Diffusion Shown on a Distance-Neighbor Graph. Proceedings of the Royal Society A, 110, 709-737. https://doi.org/10.1098/rspa.1926.0043
[3] Lakshmi, P.D. (2000) Statistical Characteristics of Turbulent Chemical Plumes. Ph.D. Dissertation, Georgia Institute of Technology, Georgia.
[4] Webster, D.R., Roberts, P.J.W. and Raad, L. (2001) Simultaneous DPTV/PLIF Measurements of a Turbulent Jet. Experiments in Fluids, 30, 65-72. https://doi.org/10.1007/s003480000137
[5] Crimaldi, J.P. and Koseff, J.R. (2001) High-Resolution Measurements of the Spatial and Temporal Scalar Structure of a Turbulent Plume. Experiments in Fluids, 31, 90-102.
https://doi.org/10.1007/s003480000263
[6] Webster, D.R, Rahman, S. and Dasi. L.P. (2001) On the Usefulness of Bilateral Comparison to Tracking Turbulent Chemical Odor Plumes. Limnology and Oceanography, 46, 1048-1053. https://doi.org/10.4319/lo.2001.46.5.1048
[7] Tsukahara, T., Oyagi, K. and Kawaguchi, Y. (2016) Estimation Method to Identify Scalar Point Source in Turbulent Flow based on Taylor’s Diffusion Theory. Environment Fluid Mechanics, 16, 521-537. https://doi.org/10.1007/s10652-015-9436-x
[8] Moore, P.A. and Atema, J. (1991) Spatial Information in the Three-Dimensional Fine Structure of an Aquatic Odor Plume. The Biological Bulletin, 181, 408-418.
https://doi.org/10.2307/1542361
[9] Webster, D.R. and Weissburg, M.J. (2001) Chemosensory Guidance Cues in a Turbulent Chemical Odor Plume. Limnology and Oceanography, 46, 1034-1047.
https://doi.org/10.4319/lo.2001.46.5.1034
[10] Page, J.L., Dickman, B.D. Webster, D.R. and Weissburg, M.J. (2011) Getting Ahead: Context-Dependent Responses to Odor Filaments Drives Along-Stream Progress during Odor Tracking in Blue Crabs. Journal of Experiment Biology, 214, 1498-1512. https://doi.org/10.1242/jeb.049312
[11] Endo, M., Tsukahara, T. and Kawaguchi, Y. (2015) Relationship between Diffusing-Material Lumps and Organized Structures in Turbulent Flow. Proceedings of the 5th International AJK Joint Fluids Engineering Conference, Seoul, 26-31 July 2015, 1747-1753.
[12] Crimaldi, J.P., Wiley, M.B. and Koseff, J.R. (2002) The Relationship Between Mean and Instantaneous Structure in Turbulent Passive Scalar Plumes. Journal of Turbulence, 3, 1-24.
[13] Fackrell, J.E. and Robins, A.G. (1982) Concentration Fluctuations and Fluxes in Plumes from Point Source in a Turbulent Boundary Layer. Journal of Fluid Mechanics, 117, 1-26.
https://doi.org/10.1017/S0022112082001499
[14] Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66. https://doi.org/10.1109/TSMC.1979.4310076
[15] Liao, P.S., Chen, T.S. and Chung, P.C. (2001) A Fast Algorithm for Multilevel Thresholding. Journal of Information Science and Engineering, 17, 713-727.
[16] He, L., Chao, Y., Suzuki, K. and Wu, K. (2009) Fast Connected-Component Labeling. Pattern Recognition, 42, 1977-1987. https://doi.org/10.1016/j.patcog.2008.10.013