Back
 AM  Vol.7 No.18 , December 2016
Asymptotic Formulas of the Solutions and the Trace Formulas for the Polynomial Pencil of the Sturm-Liouville Operators
Abstract: This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas for the eigenvalues of a simple boundary problem generated in a finite interval by the considered Sturm-Liouville equation.
Cite this paper: Nabiev, A. (2016) Asymptotic Formulas of the Solutions and the Trace Formulas for the Polynomial Pencil of the Sturm-Liouville Operators. Applied Mathematics, 7, 2411-2417. doi: 10.4236/am.2016.718189.
References

[1]   Alonso, M. (1980) Schrodinger Spectral Problems with Energy-Dependent Potentials as Sources of Nonlinear Hamiltonian Evolution Equations. Journal of Mathematical Physics, 21, 2342-2349.
https://doi.org/10.1063/1.524690

[2]   Yordanov, R. (1984) About Some Spectral Properties of the Schrodinger Equation with an Energy Dependent Potential Generating Fully Integrable Hamiltonian Systems. Annals de L’Universite de Sofia “Kliment Ohridski” Faculte de Mathematiques et Mecanique, 78, 1-29.

[3]   Jaulent, M. and Jean, C. (1982) Solution of a Schrodinger Inverse Scattering Problem with a Polynomial Spectral Dependence in the Potential. Journal of Mathematial Physics, 23, 258-266.
https://doi.org/10.1063/1.525347

[4]   Marchenko, V.A. (1997) Sturm-Liouville’s Operators and Their Application. Kiev.

[5]   Guseinov, I.M., Nabiev, A.A. and Pashayev, R.T. (2000) Transformation Operators and Asymptotic Formulas for the Eigenvalues of a Polynomial Pencil of Sturm-Liouville Operators. Siberian Journal of Mathematics, 41, 453-464.
https://doi.org/10.1007/BF02674102

[6]   Samko, S.G., Kilbas, A.A. and Marichev, O.M. (1987) Integral and Derifatives of Fractional Order and Its Applications. Minsk, Nauka and Tekhnika.

 
 
Top