APM  Vol.1 No.5 , September 2011
Property S[a,b]: A Direct Approach
Abstract: In this paper we prove directly that the property S[α,b] , implies[α,b) -compact, and under certain conditions it implies [α,b] -compact.
Cite this paper: nullG. Miliaras, "Property S[a,b]: A Direct Approach," Advances in Pure Mathematics, Vol. 1 No. 5, 2011, pp. 284-285. doi: 10.4236/apm.2011.15051.

[1]   P. S. Alexandroff and P. Urysohn, “Memorie sub les Espaces Topologiques Compacts,” Koninklijke Akademie van Weten-schappen, Amsterdam, Vol. 14, 1929, pp. 1-96.

[2]   R. E. Hodel and J. E. Vaughan, “A Note on [a,b] Compactness,” General Topology and Its Applications, Vol. 4, No. 2, 1974, pp. 179-189. doi:10.1016/0016-660X(74)90020-8

[3]   G. Miliaras, “Cardinal Invariants and Covering Properties in Topolology,” Thesis, Iowa State University, Amsterdam, 1988.

[4]   G. Miliaras, “Initially Compact and Related Spaces,” Periodica Mathematica Hungarica, Vol. 24, No. 3, 1992, pp. 135-141. doi:10.1007/BF02330872

[5]   G. Miliaras, “A Review in the Generalized Notian of Compactness,” Unione Matematica Italiana, Vol. 7, 1994, pp. 263-270.

[6]   G. Miliaras and D. E. Sanderson, “Complementary Forms of [α, β]-Compact,” To-pology and Its Applications, Vol. 63, No. 1, 1995, pp. 1-19. doi:10.1016/0166-8641(95)90001-2

[7]   R. M. Stephenson, “Initially k-Compact and Related Spaces,” In: K. Kuuen and J. E. Vaughan, Eds., Handbook of Set-Theoritic Topology, North-Holland, Amsterdam, 1984, pp. 603-632.

[8]   J. E. Vaughan (Greensbaro N. C.), “Some Properties Related to [a,b]—Compactness,” Fundamenta Mathematicae, Vol. 87, 1975, pp. 251-260.