Back
 APM  Vol.1 No.5 , September 2011
Exponential Decay Rate of the Perturbed Energy of the Wave Equation with Zero Order Term
Abstract: In this paper, we consider the wave equation with zero order term. We use the compactness uniqueness argument and some result of I. Lasiecka and D. Tataru in [4] to prove, directly, the exponential decay rate of the perturbed energy.
Cite this paper: nullH. Ilhem, "Exponential Decay Rate of the Perturbed Energy of the Wave Equation with Zero Order Term," Advances in Pure Mathematics, Vol. 1 No. 5, 2011, pp. 276-279. doi: 10.4236/apm.2011.15049.
References

[1]   S. Feng and X. Feng, “Nonlinear Internal Damping of Wave Equations with Variable Coefficients,” Acta Mathematica Sinica, Vol. 20, No. 6, 2004, pp. 1057-1072. doi:10.1007/s10114-004-0394-3

[2]   Y. Guo and P. F. Yao, “Stabilization of Euler-Bernoulli Plate Equation with Variable Coefficients by Nonlinear Boundary Feedback,” Journal of Mathematical Analysis and Applications, Vol. 317, No. 1, 2006, pp. 50-70. doi:10.1016/j.jmaa.2005.12.006

[3]   V. Komornick and E. Zuazua, “A Direct Method for Boundary Stabilization of the Wave Equation,” Journal de Mathématiques Pures et Appli-quées, Vol. 69, 1990, pp. 33-54.

 
 
Top