Back
 JAMP  Vol.4 No.12 , December 2016
Information and Conditional Probability to Go beyond Hidden Variables
Abstract: We study the relation between the possibility of describing quantum correlation with hidden variables and the existence of the Bloch sphere. We derive some proposition concerning a quantum expected value under an assumption about the existence of the Bloch sphere in N spin-1/2 systems. However, the hidden variables theory violates the proposition with a magnitude that grows exponentially with the number of particles. Therefore, we have to give up either the existence of the Bloch sphere or the hidden variables theory. We show that the introduction of curved information and the continuity equation of probability are in agreement with classical quantum mechanics. So we give up the hidden variable theory as local theory and we accept the Bloch sphere as global theory connected with the information space.
Cite this paper: Nagata, K. , Resconi, G. , Nakamura, T. and Geurdes, H. (2016) Information and Conditional Probability to Go beyond Hidden Variables. Journal of Applied Mathematics and Physics, 4, 2203-2214. doi: 10.4236/jamp.2016.412214.
References

[1]   von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.

[2]   Feynman, R.P., Leighton, R.B. and Sands, M. (1965) Lectures on Physics, Volume III, Quantum Mechanics. Addison-Wesley Publishing Company, Boston.

[3]   Redhead, M. (1989) Incompleteness, Nonlocality, and Realism. 2nd Edition, Clarendon Press, Oxford.

[4]   Peres, A. (1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht.

[5]   Sakurai, J.J. (1995) Modern Quantum Mechanics. Revised Edition, Addison-Wesley Publishing Company, Boston.

[6]   Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.

[7]   Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations of Physics, 33, 1469-1493.
https://doi.org/10.1023/A:1026096313729

[8]   Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, C., Zukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An Experimental Test of Non-Local Realism. Nature (London), 446, 871-875.
https://doi.org/10.1038/nature05677

[9]   Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Zukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) Experimental Test of Nonlocal Realistic Theories without the Rotational Symmetry Assumption. Physical Review Letters, 99, Article ID: 210406.
https://doi.org/10.1103/PhysRevLett.99.210406

[10]   Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of Leggett’s Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407.
https://doi.org/10.1103/PhysRevLett.99.210407

[11]   Suarez, A. (2008) Nonlocal “Realistic” Leggett Models Can Be Considered Refuted by the Before-Before Experiment. Foundations of Physics, 38, 583-589.
https://doi.org/10.1007/s10701-008-9228-y

[12]   Zukowski, M. (2008) Comment on: Nonlocal “Realistic” Leggett Models Can Be Considered Refuted by the Before-Before Experiment. Foundations of Physics, 38, 1070-1071.
https://doi.org/10.1007/s10701-008-9250-0

[13]   Suarez, A. (2009) On Bell, Suarez-Scarani, and Leggett Experiments: Reply to a Comment by Marek Zukowski in [Found. Phys. 38: 1070, 2008]. Foundations of Physics, 39, 156-159.
https://doi.org/10.1007/s10701-008-9267-4

[14]   Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London A, 400, 97-117.
https://doi.org/10.1098/rspa.1985.0070

[15]   Jones, J.A. and Mosca, M. (1998) Implementation of a Quantum Algorithm on a Nuclear Magnetic Resonance Quantum Computer. The Journal of Chemical Physics, 109, 1648-1653. https://doi.org/10.1063/1.476739

[16]   Gulde, S., et al. (2003) Implementation of the Deutsch–Jozsa Algorithm on an Ion-Trap Quantum Computer. Nature, 421, 48-50.
https://doi.org/10.1038/nature01336

[17]   De Oliveira, A.N., Walborn, S.P. and Monken, C.H. (2005) Implementing the Deutsch Algorithm with Polarization and Transverse Spatial Modes. Journal of Optics B: Quantum and Semiclassical Optics, 7, 288-292.
https://doi.org/10.1088/1464-4266/7/9/009

[18]   Kim, Y.-H. (2003) Single-Photon Two-Qubit Entangled States: Preparation and Measurement. Physical Review A, 67, 040301(R).

[19]   Mohseni, M., Lundeen, J.S., Resch, K.J. and Steinberg, A.M. (2003) Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm. Physical Review Letters, 91, Article ID: 187903.
https://doi.org/10.1103/PhysRevLett.91.187903

[20]   Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S. and Zeilinger, A. (2007) Experimental Realization of Deutsch’s Algorithm in a One-Way Quantum Computer. Physical Review Letters, 98, Article ID: 140501.
https://doi.org/10.1103/PhysRevLett.98.140501

[21]   Bernstein, E. and Vazirani, U. (1993) Quantum Complexity Theory. Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC ‘93), San Diego, 16-18 May 1993, 11-20.
https://doi.org/10.1145/167088.167097

[22]   Bernstein, E. and Vazirani, U. (1997) Quantum Complexity Theory. SIAM Journal on Computing, 26, 1411-1473.

[23]   Simon, D.R. (1994) On the Power of Quantum Computation. Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 20-22 November 1994, 116-123.

[24]   Du, J., et al. (2001) Implemen-tation of a Quantum Algorithm to Solve the Bernstein-Vazirani Parity Problem without Entanglement on an Ensemble Quantum Computer. Physical Review A, 64, Article ID: 042306.
https://doi.org/10.1103/PhysRevA.64.042306

[25]   Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P., Haelterman, M. and Massar, S. (2003) Fiber-Optics Implementation of the Deutsch-Jozsa and Bernstein-Vazirani Quantum Algorithms with Three Qubits. Physical Review Letters, 90, Article ID: 157902.
https://doi.org/10.1103/PhysRevLett.90.157902

[26]   Li, H. and Yang, L. (2015) A Quantum Algorithm for Approximating the Influences of Boolean Functions and Its Applications. Quantum Information Processing, 14, 1787-1797.
https://doi.org/10.1007/s11128-015-0954-8

[27]   Resconi, G. and Nagata, K. (2016) Beyond Set Theory in Bell Inequality. Journal of Modern Physics, 7, 65-73.
https://doi.org/10.4236/jmp.2016.71007

[28]   Resconi, G., Licata, I. and Fiscaletti, D. (2013) Unification of Quantum and Gravity by Non Classical Information Entropy Space. Entropy, 15, 3602-3619.

 
 
Top