Back
 OJFD  Vol.6 No.4 , December 2016
Numerical Simulation of Flow over an Open Cavity with Self-Sustained Oscillation Mode Switching
Abstract: Numerical simulations are used to investigate the self-sustained oscillating flows past an open cavity. The two-dimensional incompressible Navier-Stokes equations are solved directly by using the finite difference method for cavities with an upstream laminar boundary layer. A series of simulations are performed for a variety of cavity length-to-depth ratio. The results show the switching among some flow modes including non-oscillation mode, shear layer mode and wake mode. The variation of the Strouhal number is in favorable agreement with available experimental data. The results of flow fields in the cavity reveal the relationship between the cavity shear layer oscillation modes and recirculating vortices in the cavity.
Cite this paper: Yoshida, T. and Watanabe, T. (2016) Numerical Simulation of Flow over an Open Cavity with Self-Sustained Oscillation Mode Switching. Open Journal of Fluid Dynamics, 6, 361-370. doi: 10.4236/ojfd.2016.64027.
References

[1]   Rockwell, D. and Naudascher, E. (1978) Review—Self-Sustaining Oscillations of Flow past Cavities. ASME Journal of Fluids Engineering, 100, 152-165. https://doi.org/10.1115/1.3448624

[2]   Sarohia, V. (1977) Experimental Investigation of Oscillations in Flows over Shallow Cavities. AIAA Journal, 15, 984-991. https://doi.org/10.2514/3.60739

[3]   Knisely, C. and Rockwell, D. (1982) Self-Sustained Low-Frequency Components in an Impinging Shear Layer. Journal of Fluid Mechanics, 116, 157-186.
https://doi.org/10.1017/S002211208200041X

[4]   Gharib, M. (1987) Response of the Cavity Shear Layer Oscillations to External Forcing. AIAA Journal, 25, 43-47. https://doi.org/10.2514/3.9576

[5]   Gharib, M. and Roshko, A. (1987) The Effect of Flow Oscillations on Cavity Drag. Journal of Fluid Mechanics, 177, 501-530. https://doi.org/10.1017/S002211208700106X

[6]   Rowley, C.W., Colonius, T. and Basu, A.J. (2002) On Self-Sustained Oscillations in Two-Dimensional Compressible Flow over Rectangular Cavities. Journal of Fluid Mechanics, 455, 315-346. https://doi.org/10.1017/S0022112001007534

[7]   Rubio, G., De Roeck, W., Baelmans, M. and Desmet, W. (2007) Numerical Identification of Flow-Induced Oscillation Modes in Rectangular Cavities Using Large Eddy Simulation. International Journal for Numerical Methods in Fluids, 53, 851-866. https://doi.org/10.1002/fld.1310

[8]   Armfield, S. and Street, R. (2002) An Analysis and Comparison of the Time Accuracy of Fractional-Step Methods for Navier-Stokes Equations on Staggered Grids, International Journal for Numerical Methods in Fluids, 38, 255-282. https://doi.org/10.1002/fld.217

[9]   Kim, J. and Moin, P. (1985) Application of a Fractional Step Method to Incompressible Navier-Stokes Equations. Journal of Computational Physics, 59, 308-323.
https://doi.org/10.1016/0021-9991(85)90148-2

[10]   Morinishi, Y., Vasilyev, O.V. and Ogi, T. (2004) Fully Conservative Finite Difference Scheme in Cylindrical Coordinates for Incompressible Flow Simulations. Journal of Computational Physics, 197, 686-710. https://doi.org/10.1016/j.jcp.2003.12.015

 
 
Top