ME  Vol.2 No.4 , September 2011
Exploring the Priced Factors in ICAPM in Japan
Abstract: This paper investigates the priced factors in the Intertemporal Capital Asset Pricing Model (ICAPM) in the Tokyo Stock Exchange (TSE) in Japan. Focusing on the time-varying covariance risks derived by the multivariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, we find new priced state variables in Japan. That is, our empirical tests reveal that in the TSE, the time-varying covariance between market return and illiquidity measure and that between market return and the log change of the seasonally adjusted industrial production are statistically significantly priced state variables in the ICAPM.
Cite this paper: nullC. TSUJI, "Exploring the Priced Factors in ICAPM in Japan," Modern Economy, Vol. 2 No. 4, 2011, pp. 701-705. doi: 10.4236/me.2011.24078.

[1]   R. C. Merton, “An intertemporal Capital Asset Pricing Model,” Econometrica, Vol. 41, No. 5, 1973, pp. 867-887.

[2]   R. Petkova, “Do the Fama-French Factors Proxy for Innovations in Predictive Variables?” Journal of Finance, Vol. 61, No. 2, 2006, pp. 581-612. HHUdoi:org/10.1111/j.1540-6261.2006.00849.xU

[3]   M. A. Brennan, A. Wang and Y. Xia, “Estimation and test of a Simple Model of Intertemporal Capital Asset Pricing,” Journal of Finance, Vol. 59, No. 4, 2004, pp. 1743-1775. HHUdoi:org/10.1111/j.1540-6261.2004.00678.xU

[4]   G. B. Turan, “The Intertemporal Relation between Expected Returns and Risk,” Journal of Financial Economics, Vol. 87, No. 1, 2008, pp. 101-131. HHUdoi:org/10.1016/j.jfineco.2007.03.002U

[5]   M. P. Joshua and W. Mungo, “Average Correlation and Stock Market Returns,” Journal of Financial Economics, Vol. 96, No. 3, 2010, pp. 364-380. HHUdoi:org/10.1016/j.jfineco.2010.02.011U

[6]   Y. Jianfeng and Y. Yu, “Investor Sentiment and the Mean–Variance Relation,” Journal of Financial Economics, Vol. 100, No. 2, 2011, pp. 367-381. HHUdoi:org/10.1016/j.jfineco.2010.10.011U

[7]   C. Lundblad, “The Risk Return Tradeoff in the Long Run: 1836-2003,” Journal of Financial Economics, Vol. 85, No. 1, 2007, pp. 123-150. HHUdoi:org/10.1016/j.jfineco.2006.06.003U

[8]   T. Bollerslev, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, Vol. 31, No. 3, 1986, pp. 307-327. HHUdoi:org/10.1016/0304-4076(86)90063-1U

[9]   D. B. Nelson, “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica, Vol. 59, No. 2, 1991, pp. 347-370.

[10]   R. F. Engle and K. F. Kroner, “Multivariate simultaneous generalized ARCH,” Econometric Theory, Vol. 11, No. 1, 1995, pp. 122-150. HHUdoi:org/10.1017/S0266466600009063U

[11]   K. F. Kroner and V. K. Ng, “Modeling Asymmetric Comovement of Assets Returns,” Review of Financial Studies, Vol. 11, No. 4, 1998, pp. 817-844. HHUdoi:org/10.1093/rfs/11.4.817U