Back
 AiM  Vol.6 No.14 , December 2016
Pool of Biological Resources for Potential Applications in Solid State Fermentation Obtained from a Forest Plantation of Pinus pseudostrobus Lindl, Mexico
Abstract: A forest plantation, product of the reforestation of pine trees, represented a pool of biological resources for the implementation of a solid state fermentation process. The trees were identified as Pinus pseudostrobus Lindl from which lignocellulosic material in the form of pine needles was collected. Soil fungi, responsible for plant litter decomposition, were cultured at laboratory conditions and tested for their ability to grow on cellulose and hemicellulose as the sole carbon sources. A fungal strain, belonging to the genus Penicillium, was selected for growing it on pine needles as the substrate in a solid state culture. After following the culture for six days, the newly isolated strain exhibited a much higher capacity for spore production and holocellulose degradation, compared to a purchased strain of Penicillium chrysogenum and two control conditions. This work marks the beginning of future studies focused on commercial applications and represents the first report of a biotechnological process based on pine needles and their degradation by an ascomycetes species belonging to the genus Penicillium.
Cite this paper: Rodríguez-Bustamante, E. , Rodríguez-Flores, E. , Rojas-García, F. , Callejas-Iberri, A. , Gallardo-Roldán, L. , Gómez-Manzo, S. , Marcial-Quino, J. , Macías-Rubalcava, M. , Lazcano-Pérez, F. and Arreguín-Espinosa, R. (2016) Pool of Biological Resources for Potential Applications in Solid State Fermentation Obtained from a Forest Plantation of Pinus pseudostrobus Lindl, Mexico. Advances in Microbiology, 6, 1021-1039. doi: 10.4236/aim.2016.614096.
References

[1]   Young, R.A. and Giese, R.L. (1990) Introduction to Forest Sciences. John Wiley & Sons, New York.

[2]   Bärlocher, F. (2005) Leaf Mass Loss Estimated by Litter Bag Technique. In: Graça, M.A.S., Bärlocher, F. and Gessner, M.O., Eds., Methods to Study Litter Decomposition, a Practical Guide, Springer, Dordrecht, 37-42.
https://doi.org/10.1007/1-4020-3466-0_6

[3]   Bishop, J. and Landell-Mills, N. (2006) The Environmental Services of Forests (Los Servicios Ambientales de los Bosques). In: Pagiola, S., Bishop, J. and Landell-Mills, N., Eds., Selling Environmental Services of Forests: Market-Based Mechanisms for Conservation and Development (La Venta de Servicios Ambientales Forestales: Mecanismos Basados en el Mercado para la Conservación y Desarrollo), Instituto Nacional de Ecología-Secretaría de Medio Ambiente y Recursos Naturales (INE-SEMARNAT), Mexico, 47-74.

[4]   Coleman, D.C., Crossley Jr., D.A. and Hendrix, P.F. (2004) Fundamentals of Soil Ecology. Elsevier Academic Press, Burlington, San Diego, London.

[5]   Spurr, S.H. and Barnes, B.V. (1982) Forest Ecology (Ecología Forestal). A.G.T. Editor, S. A., Mexico.

[6]   Armson, K.A. (1977) Forest Soils: Properties and Processes. University of Toronto Press, Toronto.
https://doi.org/10.3138/9781442656338

[7]   Waring, R.H. and Schlesinger, W.H. (1985) Forest Ecosystems: Concepts and Management. Academic Press Inc., Orlando, San Diego.

[8]   Adl, S.M. (2003) The Ecology of Soil Decomposition. CABI Publishing, Wallingford, Cambridge.
https://doi.org/10.1079/9780851996615.0000

[9]   Berg, B. and McClaugherty, C. (2008) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag, Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-74923-3

[10]   Swift, M.J., Heal, O.W. and Anderson, J.M. (1979) Decomposition in Terrestrial Ecosystem. Blackwell Scientific Publications, Oxford.

[11]   Hättenschwiler, S., Tiunov, A.V. and Scheu, S. (2005) Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218.
https://doi.org/10.1146/annurev.ecolsys.36.112904.151932

[12]   Gernandt, D.S. and Pérez de la Rosa, J.A. (2014) Biodiversity of Pinophyta (Conifers) in Mexico [Biodiversidad de Pinophyta (Coníferas) en México]. Revista Mexicana de Biodiversidad, 85, S126-S133.
https://doi.org/10.7550/rmb.32195

[13]   Flores Mata, G., Jiménez López, L., Madrigal Sánchez, X., Moncayo Ruiz, F. and Takaki Takaki, F. (1971) Map and Description of the Types of Vegetation of the Mexican Republic [Mapa y Descripción de los Tipos de Vegetación de la Repúbica Mexicana]. SRH, Dirección de Agrología, Mexico.

[14]   Antartis (2015) Highly Detailed Planet Earth. Mexico Elements Furnished by NASA.
https://stockfresh.com/image/6510776/detailed-earth-mexico

[15]   Google Maps (2015)
https://www.google.com.mx/maps/@19.3146744,99.3933926,5503m/data=!3m1!1e3?hl=en

[16]   Pandey, A., Soccol, C.R., Rodriguez-Leon, J.A. and Nigam, P. (2001) Solid-State Fermentation in Biotechnology-Fundamentals and Applications. Asiatech Publishers Inc., New Delhi.

[17]   Krishna, C. (2005) Solid-State Fermentation Systems—An Overview. Critical Reviews in Biotechnology, 25, 1-30.
https://doi.org/10.1080/07388550590925383

[18]   Lavelle, P. and Spain, A.V. (2005) Soil Ecology. Springer, Dordrecht.

[19]   Brady, N.C. and Weil, R.R. (2008) The Nature and Properties of Soils. Pearson Prentice Hall, Columbus.

[20]   Van Soest, P.J. (1963) Use of Detergents in the Analyses of Fibrous Feed. II. A Rapid Method for the Determination of Fiber and Lignin. Journal of the Association of Official Agricultural Chemists, 46, 829-835.

[21]   Zorn, H., Langhoff, S., Scheibner, M. and Berger, R.G. (2003) Cleavage of Carotene by Fungi. Applied Microbiology and Biotechnology, 62, 331-336.
https://doi.org/10.1007/s00253-003-1309-4

[22]   Hugh, R. and Leifson, E. (1953) The Taxonomic Significance of Fermentative versus Oxidative Metabolism of Carbohydrates by Various Gram Negative Bacteria. Journal of Bacteriology, 66, 24-26.

[23]   Raper, K.B. and Thom, C. (1949) A Manual of the Penicillia. The Williams & Wilkins Company, Baltimore.

[24]   Riddell, R.W. (1950) Permanent Stained Mycological Preparations Obtained by Slide Culture. Mycologia, 42, 265-270.
https://doi.org/10.2307/3755439

[25]   White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., Gelfand, D.H. and Sninsky, J.J., Eds., PCR Protocols: A Guide to Methods and Applications, Academic Press Inc., New York, 315-322.
https://doi.org/10.1016/b978-0-12-372180-8.50042-1

[26]   Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402.
https://doi.org/10.1093/nar/25.17.3389

[27]   Sáenz, R.J.T., Muñoz, F.H.J. and Rueda, S.A. (2011) Promissory Species of Temperate Climate for Commercial Forest Plantations in Michoacan [Especies Promisorias de Clima Templado para Plantaciones Forestales Comerciales en Michoacán]. Libro Técnico Núm. 10. SAGARPA-INIFAP-CIRPAC-CAMPO Experimental Uruapan, Uruapan.

[28]   IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. and Wagner, F., Eds., Institute for Global Environmental Strategies (IGES), Kanagawa.

[29]   Barnett, H.L. and Hunter, B.B. (1987) Illustrated Genera of Imperfect Fungi. Macmillan Publishing Co., New York, and Collier Macmillan, London.

[30]   Domsch, K.H., Gams, W. and Anderson, T.-H. (2007) Compendium of Soil Fungi. IWH-Verlag, Eching.

[31]   Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spoug,e J.L., Levesque, C.A., Chen, W. and Fungal Barcoding Consortium (2012) Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241-6246.
https://doi.org/10.1073/pnas.1117018109

[32]   Visagie, C.M., Houbraken, J., Frisvad, J.C., Hong, S.B., Klaassen, C.H., Perrone, G., Seifert, K.A., Varga, J., Yaguchi, T. and Samson, R.A. (2014) Identification and Nomenclature of the Genus Penicillium. Studies in Mycology, 78, 343-371.
https://doi.org/10.1016/j.simyco.2014.09.001

[33]   Houbraken, J., de Vries, R.P. and Samson, R.A. (2014) Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species. Advances in Applied Microbiology, 86, 199-249.
https://doi.org/10.1016/B978-0-12-800262-9.00004-4

[34]   Boberg, J.B., Finlay, R.D., Stenlid, J., Ekblad, A. and Lindahl, B.D. (2014) Nitrogen and Carbon Reallocation in Fungal Mycelia during Decomposition of Boreal Forest Litter. PLoS ONE, 9, e92897.
https://doi.org/10.1371/journal.pone.0092897

[35]   Boberg, J.B., Nasholm, T., Finlay, R.D., Stenlid, J. and Lindahl, B.D. (2011) Nitrogen Availability Affects Saprotrophic Basidiomycetes Decomposing Pine Needles in a Long Term Laboratory Study. Fungal Ecology, 4, 408-416.
https://doi.org/10.1016/j.funeco.2011.03.004

[36]   Boberg, J., Finlay, R.D., Stenlid, J., Näsholm, T. and Lindahl, B.D. (2008) Glucose and Ammonium Additions Affect Needle Decomposition and Carbon Allocation by the Litter Degrading Fungus Mycena epipterygia. Soil Biology and Biochemistry, 40, 995-999.
https://doi.org/10.1016/j.soilbio.2007.11.005

[37]   Mouso, N., Diorio, L.A. and Forchiassin, F. (2003) Degradation of Pine Needles by Stereum hirsutum. Revista Argentina de Microbiología, 35, 219-223.

[38]   Martínez, M. (1948) The Mexican Pines [Los Pinos Mexicanos]. Ediciones Botas, Mexico.

 
 
Top