JEAS  Vol.6 No.4 , December 2016
Potentialities of the Poly(Aminoethyl Methacrylate) p(AMA) as Gelatin-Like Polymer in Complex Coacervation
Abstract: In order to overcome all encapsulation variations during a complex coacervation process, the replacement of gelatin cationic polymer has been performed using p(AMA). The synthesis of p(AMA) was realized through a random radical methodology. Under these conditions a polymer with 18,600 g/mol was found appropriate for optimal capsule yield and physico-chemical properties. Turbidity measurements performed during the coacervation reactions with different ratios of both CMC and p(AMA) allowed optimizing coacervation conditions. Coacervates characterizations particularly demonstrate the stability of the capsules exhibiting a break strength over 3 N/m2.
Cite this paper: Esselin, N. , Portolan, F. , Domloge, N. , Rees, D. , Musa, O. and Pilard, J. (2016) Potentialities of the Poly(Aminoethyl Methacrylate) p(AMA) as Gelatin-Like Polymer in Complex Coacervation. Journal of Encapsulation and Adsorption Sciences, 6, 147-160. doi: 10.4236/jeas.2016.64011.

[1]   Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B. and Behr, J.P. (1995) A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine. Proceedings of the National Academy of Sciences USA, 92, 7297-7301.

[2]   Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A. and Baker, J.R. (1996) Efficient Transfer of Genetic Material into Mammalian Cells Using Starburst Polyamidoamine Dendrimers. Proceedings of the National Academy of Sciences USA, 93, 4897-4902.

[3]   Sakaki, S., Tsuchida, M., Iwasaki, Y. and Ishihara, K. (2004) Water-Soluble Phospholipid Polymer as a New Biocompatible Synthetic DNA Carrier. Bulletin of the Chemical Society of Japan, 77, 2283-2288.

[4]   Ganachaud, F., Sauzedde, F., Elaissari, A. and Pichot, C. (1997) Emulsifier-Free Emulsion Copolymerization of Styrene with Two Different Amino-Containing Cationic Monomers. I. Kinetic Studies. Journal of Applied Polymer Science, 65, 2315-2330.<2315::AID-A

[5]   Basinska, T. and Slomkowski, S. (1995) Attachment of Horseradish Peroxidase (HRP) on to Thepoly(styrene/acrolein) Latexes and on to Their Derivatives with Amino Groups on the Surface; Activity of Immobilized Enzyme. Colloid and Polymer Science, 273, 431-438.

[6]   Armes, S.P. and Aldissi, M.J. (1989) Novel Colloidal Dispersons of Polyaniline. Journal of the Chemical Society, Chemical Communications, 88-89. Armes, S.P., Aldissi, M., Agnew, S. and Gottesfeld, S. (1990) Aqueous Colloidal Dispersions of Polyaniline Formed by Using Poly(vinylpyridine)-Based Steric Stabilizers. Langmuir, 6, 1745-1749.

[7]   Ramos, J., Martin-Molina, A., Sanz-Izquierdo, M.P., Rus, A., Borque, L., Hidalgo-Alvarez, R., Galisteo-Golzalez, F. and Forcada, J. (2003) Amino-Functionalized Latex Particles Obtained by a Multistep Method: Development of a New Immunoreagent. Journal of Polymer Science Part A: Polymer Chemistry, 41, 2404-2411. Sharma, G. and Ballauff, M. (2004) Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles. Macromolecular Rapid Communications, 25, 547-552.

[8]   Deming, T.J. (1997) Facile Synthesis of Block Copolypeptides of Defined Architecture. Nature, 390, 386-389. Wong, M.S., Cha, J.N., Choi, K.S., Deming, T.J. and Stucky, G.D. (2002) Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides. Nano Letters, 2, 583-587. Holowka, E.P., Pochan, D.J. and Deming, T.J. (2005) Charged Polypeptide Vesicles with Controllable Diameter. Journal of the American Chemical Society, 127, 12423-12428.

[9]   Euliss, L.E., Trnka, T.M., Deming, T.J. and Stucky, G.D. (2004) Design of a Doubly-Hydrophilic Block Copolypeptide That Directs the Formation of Calcium Carbonate Microspheres. Chemical Communications, 10, 1736-1737.

[10]   Jin, R.H. and Yuan, J.J. (2005) Synthesis of Poly(ethyleneimine)s-silica Hybrid Particles with Complex Shapes and Hierarchical Structures. Chemical Communications, 21, 1399-1401.

[11]   Oxley, J.D. (2012) Stability and Prediction of Shelf-Life for Microencapsulated Ingredients. Agro Food Industry Hi Tech, 23, 60-63.

[12]   William, R.M. (1990) The Procter & Gamble Company, Perfume Microcapsules for Use in Granular Detergent Compositions. CA 2004270 A1

[13]   Cheng, S.Y., Yuen, C.W.M., Kan, C.W. and Cheuk, K.K.L. (2008) Development of Cosmetic Textiles Using Microcapsulation Technology. Research Journal of Textile and Apparel, 12, 41-51.

[14]   Tiebackx, F.W.Z. (1911) Gleichzeitige Ausflockung zweier Kolloide. Colloid and Polymer Science, 8, 198-201.

[15]   Bungenberg de Jong, H.G. and Kruyt, H.R. (1929) Coacervation (Partial Miscibility in Colloid Systems). Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen, 32, 849-856.

[16]   Overbeek, J.T.G. and Voorn, M.J. (1957) Phase Separation in Polyelectrolyte Solutions, Theory of Complex Coacervation. Journal of Cellular and Comparative Physiology, 49, 7-26.

[17]   Veis, A. and Aranyi, C. (1960) Phase Separation in Polyelectrolyte Systems. I. Complex Coacervates of Gelatine. Journal of Chemical Physics, 64, 1203-1210.

[18]   Veis, A. (1961) Phase Separation in Polyelectrolyte Solutions. II. Interaction Effects. Journal of Physical Chemistry, 65, 1798-1803.

[19]   Veis, A. (1963) Phase Separation in Polyelectrolyte Systems. III. Effect of Aggregation and Molecular Weight Heterogeneity. Journal of Physical Chemistry, 67, 1960-1964.

[20]   Veis, A., Bodor, E. and Mussell, S. (1967) Molecular Weight Fractionation and the Self-Suppression of Complex Coacervation. Biopolymers, 5, 37-59.

[21]   Nakajima, A. and Sato, H. (1972) Phase Relationships of an Equivalent Mixture of Sulfated Polyninyl Alcohol and Aminoacetalyzed Polyvinyl Alcohol in Microsalt Aqueous Solution. Biopolymers, 10, 1345-1355.

[22]   Tainaka, K. (1979) Study of Complex Coacervation in Low Concentration by Virial Expansion Method. I. Salt Free Systems. Journal of the Physical Society of Japan, 46, 1899-1906.

[23]   Tainaka, K. (1980) Effect of Counterions on Complex Coacervation. Biopolymers, 19, 1289-1298.

[24]   Green, B.K. and Schleicher, L. (1956) Manifold Record Material. US 2 730 456.

[25]   Green, B.K. and Schleicher, L. (1957) Oil-Containing Microscopic Capsules and Method of Making. US 2 800 457.

[26]   He, L., Read, E.S., Armes, S.P., Adams, D.J. and Lönngren, J. (2007) Synthesis of Controlled-Structure Primary Amine-Based Methacrylic Polymers by Living Radical Polymerization. Macromolecules, 40, 4429-4438.

[27]   Kromidas, S. and Kuss, H. (2009) Quantification in LC and GC: A Practical Guide to Good Chromatographic Data. John Wiley & Sons, Weinheim.

[28]   Narain, R. and Armes, S.P. (2003) Synthesis and Aqueous Solution Properties of Novel Sugar Methacrylate-Based Homopolymers and Block Copolymers. Biomacromolecules, 4, 1746-1758.

[29]   He, L., Read, E.S., Adams, D.J. and Armes, S.P. (2007) Macromolecules, 40, 4429-4438.

[30]   Frugier, D. and Audebert, R. (1994) Interaction between Oppositely Charged Low Ionic Density Polyelectolytes: Complex Formation or Simple Mixture? In: Dubin, P.L., Bock, J., Davis, R., Schultz, D.N. and Thies, C., Eds., Macromolecular Complexes in Chemistry and Biology, Springer, Berlin, 135-149.

[31]   Thompson, K.L., Read, E.S. and Armes, S.P. (2008) Chemical Degradation of Poly(2-Aminoethyl Methacrylate). Polymer Degradation and Stability, 93, 1460-1466.