Back
 MSA  Vol.7 No.12 , December 2016
Enhancement of Perovskite Solar Cells by Plasmonic Nanoparticles
Abstract: Synthetic perovskites with photovoltaic properties open a new era in solar photovoltaics. Due to high optical absorption perovskite-based thin-film solar cells are usually considered as fully absorbing solar radiation on condition of ideal blooming. However, it is not really so. The analysis of the literature data has shown that the absorbance of all photovoltaic pervoskites has the spectral hole at infrared frequencies where the solar radiation spectrum has a small local peak. This absorption dip results in the decrease of the optical efficiency of thin-film pervoskite solar cells and closes the ways of utilising them at this range for any other applications. In our work we show that to cure this shortage is possible complementing the basic structure by an inexpensive plasmonic array.
Cite this paper: Omelyanovich, M. , Makarov, S. , Milichko, V. and Simovski, C. (2016) Enhancement of Perovskite Solar Cells by Plasmonic Nanoparticles. Materials Sciences and Applications, 7, 836-847. doi: 10.4236/msa.2016.712064.
References

[1]   Ecija, A., Vidal, K., Larranaga, A., Ortega-San-Martín, L. and Arriortua, M.I. (2012) Synthetic Methods for Perovskite Materials—Structure and Morphology. In: Mastai, Y., Ed., Advances in Crystallization Processes, InTech Publisher, Rieka-Shanghai, 486-506.
https://doi.org/10.5772/36540

[2]   Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organo-Metal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r

[3]   Jung, H.S. and Park, N.-G. (2015) Perovskite Solar Cells: From Materials to Devices. Small, 11, 10-25.
https://doi.org/10.1002/smll.201402767

[4]   Wang, B., Xiao, X. and Chen, T. (2014) Perovskite Photovoltaics: A High-Efficiency Newcomer to the Solar Cell Family. Nanoscale, 6, 12287-12297.
https://doi.org/10.1039/C4NR04144E

[5]   Shen, Q., Ogomi, Y., Chang, J., Toyoda, T., Fujiwara, K., Yoshino, K., Sato, K., Yamazaki, K., Akimoto, M., Kuga, Y., Katayamad, K. and Hayase, S. (2014) Optical Absorption, Charge Separation and Recombination Dynamics in Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to Photovoltaic Performances. European Journal of Chemical Physics and Physical Chemistry, 15, 1062-1069.

[6]   Ragoussia, M.-E. and Torres, T. (2015) New Generation Solar Cells: Concepts, Trends. Chemical Communications, 51, 3957-3972.
https://doi.org/10.1039/C4CC09888A

[7]   Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H. and Snaith, H.J. (2015) Optical Properties and Limiting Photocurrent of Thin-Film Perovskite Solar Cells. Energy & Environmental Science, 8, 602.
https://doi.org/10.1039/C4EE03224A

[8]   Tommila, J., Aho, A. and Tukiainen, A. (2012) Moth-Eye Antireflection Coating Fabricated by Nanoimprint Lithography on 1 eV Dilute Nitride Solar Cell. Progress in Photovoltaics: Research and Applications, 21, 1158-1162.
https://doi.org/10.1002/pip.2191

[9]   Mallick, S.B., Agrawal, M. and Peumans, P. (2007) Optimal Light Trapping in Ultra-Thin Photonic Crystal Crystalline Silicon Solar Cells. Optics Express, 18, 5691.
https://doi.org/10.1364/OE.18.005691

[10]   Snaith, H.J. (2013) Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4, 3623-3630.
https://doi.org/10.1021/jz4020162

[11]   Panoiu, N.C. and Osgood, R.M. (2007) Enhanced Optical Absorption for Photovoltaics via Excitation of Waveguide and Plasmon-Polariton Modes. Optics Letters, 32, 2825-2829.
https://doi.org/10.1364/OL.32.002825

[12]   Atwater, H.A. and Polman, A. (2010) Plasmonics for Improved Photovoltaic Devices. Nature Materials, 9, 205-213.
https://doi.org/10.1038/nmat2629

[13]   Spinelli, P.A., Ferry, V.E., van de Groep, J., van Lare, M., Verschuuren, M.A., Schropp, R.E.I., et al. (2012) Plasmonic Light Trapping in Thin-Film Si Solar Cells. Journal of Optics, 14, Article ID: 024002.
https://doi.org/10.1088/2040-8978/14/2/024002

[14]   Catchpole, K.R. and Polman, A. (2008) Design Principles for Particle Plasmon Enhanced Solar Cells. Applied Physics Letters, 93, Article ID: 191113.
https://doi.org/10.1063/1.3021072

[15]   Pfeiffer, T.V., Ortiz-Gonzalez, J., Santbergen, R., Tan, H., Schmidt Ott, A., Zeman, M. and Smets, A.H.M. (2014) Plasmonic Nanoparticle Films for Solar Cell Applications Fabricated by Size-Selective Aerosol Deposition. Energy Procedia, 60, 3-12.
https://doi.org/10.1016/j.egypro.2014.12.335

[16]   Tan, H., Santbergen, R., Smets, A.H.M. and Zeman, M. (2012) Plasmonic Light Trapping in Thin-Film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles. Nano Letters, 12, 4070-4076.
https://doi.org/10.1021/nl301521z

[17]   Akimov, Y.A., Koh, W.S., Sian, S.Y. and Ren, S. (2010) Nanoparticle-Enhanced Thin-Film Solar Cells: Metallic or Dielectric Nanoparticles? Applied Physics Letters, 96, Article ID: 073111.
https://doi.org/10.1063/1.3315942

[18]   Omelyanovich, M., Ra’di, Y. and Simovski, C. (2015) Perfect Plasmonic Absorbers for Photovoltaic Applications. Journal of Optics, 17, Article ID: 125901.
https://doi.org/10.1088/2040-8978/17/12/125901

[19]   Bashevoy, M.V., Fedotov, V.A. and Zheludev, N.I. (2005) Optical Whirlpool on an Absorbing Metallic Nanoparticle. Optics Express, 13, 8372-8379.
https://doi.org/10.1364/OPEX.13.008372

[20]   Pillai, S., Catchpole, K.R., Trupke, T. and Green, M.A. (2007) Surface Plasmon Enhanced Silicon Solar Cells. Journal of Applied Physics, 101, Article ID: 093105.
https://doi.org/10.1063/1.2734885

[21]   Pinchuk, A., Kreibing, U. and Hilger, A. (2004) Optical Properties of Metallic Nanoparticles: Influence of Interface Effects and Interband Transitions. Surface Science, 557, 269-280.
https://doi.org/10.1016/j.susc.2004.03.056

[22]   Willis, D.A. and Grosu, V. (2005) Microdroplet Deposition by Laser-Induced forward Transfer. Applied Physics Letters, 86, Article ID: 244103.
https://doi.org/10.1063/1.1944895

[23]   Kuznetsov, A.I., Evlyukhin, A.B., Goncalves, M.R., Reinhardt, C., Koroleva, A., Arnedillo, M.L., Kiyan, R., Marti, O. and Chichkov, B.N. (2011) Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications. ACS Nano, 5, 4843-4849.
https://doi.org/10.1021/nn2009112

[24]   Zywietz, U., Evlyukhin, A.B., Reinhardt, C. and Chichkov, B.N. (2014) Laser Printing of Silicon Nanoparticles with Resonant Optical Electric and Magnetic Responses. Nature Communications, 5, Article Number: 3402.
https://doi.org/10.1038/ncomms4402

[25]   Dmitriev, P., Makarov, S.V., Milichko, V., Mukhin, I., Gudovskikh, A., Sitnikova, A., Samusev, A., Krasnok, A. and Belov, P. (2016) Laser Fabrication of Crystalline Silicon Nanoresonators from an Amorphous Film for Low-Loss All-Dielectric Nanophotonics. Nanoscale, 8, 5043-5048.
https://doi.org/10.1039/C5NR06742A

[26]   Clavero, C. (2014) Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nature Photonics, 8, 95-103.
https://doi.org/10.1038/nphoton.2013.238

[27]   Chalabi, H. and Brongersma, M.L. (2013) Plasmonics: Harvest Season for Hot Electrons. Nature Nanotechnology, 8, 229-230.
https://doi.org/10.1038/nnano.2013.49

[28]   Pastorelli, F., Bidault, S., Martorell, J. and Bonod, N. (2014) Self-Assembled Plasmonic Oligomers for Organic Photovoltaics. Advanced Optical Materials, 2, 171-175.
https://doi.org/10.1002/adom.201300363

 
 
Top