Health  Vol.8 No.15 , December 2016
The Role of Immune System in Depression Disorder
Abstract: In order to diagnose a major depressive disorder, patients must have at least 5 depres-sive symptoms out of 9 criteria, present for at least two weeks. Depressive symptoms include absence of concentration, fatigue and suicidal ideation. The intensity of de-pression symptoms affects the severity of depression and the degree of the impact on the quality of life. Major depressive disorders (MDD) are defined as a significant health problem, and are estimated to rise in prevalence in the future years. Immune cytokine, associated with major depression for instance, is the interleukin IL-6 and tu-mor necrosis factor (TNF-α) which is defined as pro-inflammatory cytokines, can ac-tivate an inflammatory response. The effects of other inflammatory cytokines on the central nervous system are of controversy. There is an increasing interest about the ef-fect of cytokines derived from innate immune system on the brain and behavior. Cytokines are defined as large sized proteins, mainly produced by immune cells. Two subtypes of cytokines exist: pro-inflammatory cytokines, facilitating inflammatory re-sponses and neural activities; and anti-inflammatory cytokines, inhibiting inflammatory processes. Besides microglia and astrocytes, immune cells such as monocytes, macrophages, and lymphocytes also produce cytokines. At the times of immunological alterations, infections or inflammation, cytokines will be in an activated form. The main goal of the current review study is to investigate the role of the immune system in the depression disorder.
Cite this paper: Hoseinzadeh, F. , Abadi, P. , Agheltar, M. , Aghayinejad, A. , Torabian, F. , Rezayat, A. , Akbarzadeh, F. and Rahimi, H. (2016) The Role of Immune System in Depression Disorder. Health, 8, 1726-1743. doi: 10.4236/health.2016.815167.

[1]   Schiepers, O.J., Wichers, M.C. and Maes, M. (2005) Cytokines and Major Depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 201-217.

[2]   Tajfard, M., Ghayour-Mobarhan, M., Rahimi, H.R., Mouhebati, M., Esmaeily, H., Ferns, G.A., et al. (2014) Anxiety, Depression and Coronary Artery Disease among Patients Undergoing Angiography in Ghaem Hospital, Mashhad, Iran. Health, 6, 1108-1115.

[3]   Eyre, H., Stuart, M. and Baune, B. (2014) A Phase-Specific Neuroimmune Model of Clinical Depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 54, 265-274.

[4]   Simon, N., McNamara, K., Chow, C., Maser, R., Papakostas, G., Pollack, M., et al. (2008) A Detailed Examination of Cytokine Abnormalities in Major Depressive Disorder. European Neuropsychopharmacology, 18, 230-233.

[5]   Kim, Y.-K., Na, K.-S., Myint, A.-M. and Leonard, B.E. (2015) The Role of Pro-Inflammatory Cytokines in Neuroinflammation, Neurogenesis and the Neuroendocrine System in Major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 277-284.

[6]   Felger, J.C. and Lotrich, F.E. (2013) Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications. Neuroscience, 246, 199-229.

[7]   Dantzer, R., O'Connor, J.C., Freund, G.G., Johnson, R.W. and Kelley, K.W. (2008) From Inflammation to Sickness and Depression: When the Immune System Subjugates the Brain. Nature Reviews Neuroscience, 9, 46-56.

[8]   Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., et al. (2010) A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, 67, 446-457.

[9]   Ader, R., Cohen, N. and Felten, D. (1995) Psychoneuroimmunology: Interactions between the Nervous System and the Immune System. The Lancet, 345, 99-103.

[10]   Berkenbosch, F., Van Oers, J., Del Rey, A., Tilders, F. and Besedovsky, H. (1987) Corticotropin-Releasing Factor-Producing Neurons in the Rat Activated by Interleukin-1. Science, 238, 524-526.

[11]   Raison, C.L., Borisov, A.S., Majer, M., Drake, D.F., Pagnoni, G., Woolwine, B.J., et al. (2009) Activation of Central Nervous System Inflammatory Pathways by Interferon-Alpha: Relationship to Monoamines and Depression. Biological Psychiatry, 65, 296-303.

[12]   Tajfard, M., GhayourMobarhan, M., Rahimi, H.R., Mouhebati, M., Esmaeily, H., Ferns, G.A., et al. (2014) Anxiety, Depression, Coronary Artery Disease and Diabetes Mellitus: An Association Study in Ghaem Hospital, Iran. Iranian Red Crescent Medical Journal, 16, e14589.

[13]   Heim, C., Owens, M.J., Plotsky, P.M. and Nemeroff, C.B. (1997) Persistent Changes in Corticotropin-Releasing Factor Systems Due to Early Life Stress: Relationship to the Pathophysiology of Major Depression and Post-Traumatic Stress Disorder. Psychopharmacology Bulletin, 33, 185-192.

[14]   Charney, D.S. (1998) Monamine Dysfunction and the Pathophysiology and Treatment of Depression. Journal of Clinical Psychiatry, 59, 11-14.

[15]   Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Charney, D.S., et al. (2000) Antidepressant Effects of Ketamine in Depressed Patients. Biological Psychiatry, 47, 351-354.

[16]   Pariante, C.M. and Miller, A.H. (2001) Glucocorticoid Receptors in Major Depression: Relevance to Pathophysiology and Treatment. Biological Psychiatry, 49, 391-404.

[17]   Duman, R.S. and Monteggia, L.M. (2006) A Neurotrophic Model for Stress-Related Mood Disorders. Biological Psychiatry, 59, 1116-1127.

[18]   McAfoose, J. and Baune, B. (2009) Evidence for a Cytokine Model of Cognitive Function. Neuroscience & Biobehavioral Reviews, 33, 355-366.

[19]   Miller, A.H., Maletic, V. and Raison, C.L. (2009) Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biological Psychiatry, 65, 732-741.

[20]   Eyre, H. and Baune, B.T. (2012) Neuroplastic Changes in Depression: A Role for the Immune System. Psychoneuroendocrinology, 37, 1397-1416.

[21]   Leonard, B. and Maes, M. (2012) Mechanistic Explanations How Cell-Mediated Immune Activation, Inflammation and Oxidative and Nitrosative Stress Pathways and Their Sequels and Concomitants Play a Role in the Pathophysiology of Unipolar Depression. Neuroscience & Biobehavioral Reviews, 36, 764-785.

[22]   Moylan, S., Maes, M., Wray, N. and Berk, M. (2013) The Neuroprogressive Nature of Major Depressive Disorder: Pathways to Disease Evolution and Resistance, and Therapeutic Implications. Molecular Psychiatry, 18, 595-606.

[23]   Tajfard, M., Latiff, L.A., Rahimi, H.R., Mouhebati, M., Esmaeily, H., Taghipour, A., et al. (2014) Serum Inflammatory Cytokines and Depression in Coronary Artery Disease. Iranian Red Crescent Medical Journal, 16, e17111.

[24]   Anisman, H., Merali, Z., Poulter, M.O. and Hayley, S. (2005) Cytokines as a Precipitant of Depressive Illness: Animal and Human Studies. Current Pharmaceutical Design, 11, 963-972.

[25]   Hiles, S.A., Baker, A.L., de Malmanche, T. and Attia, J. (2012) A Meta-Analysis of Differences in IL-6 and IL-10 between People with and without Depression: Exploring the Causes of Heterogeneity. Brain, Behavior, and Immunity, 26, 1180-1188.

[26]   Vogelzangs, N., Duivis, H.E., Beekman, A.T., Kluft, C., Neuteboom, J., Hoogendijk, W., et al. (2012) Association of Depressive Disorders, Depression Characteristics and Antidepressant Medication with Inflammation. Translational Psychiatry, 2, e79.

[27]   Maes, M., Mihaylova, I., Kubera, M. and Ringel, K. (2012) Activation of Cell-Mediated Immunity in Depression: Association with Inflammation, Melancholia, Clinical Staging and the Fatigue and Somatic Symptom Cluster of Depression. Progress in Neuro-Psychophar-macology and Biological Psychiatry, 36, 169-175.

[28]   Dahl, J., Ormstad, H., Aass, H.C.D., Malt, U.F., Bendz, L.T., Sandvik, L., et al. (2014) The Plasma Levels of Various Cytokines Are Increased during Ongoing Depression and Are Reduced to Normal Levels after Recovery. Psychoneuroendocrinology, 45, 77-86.

[29]   Maes, M., Lambrechts, J., Bosmans, E., Jacobs, J., Suy, E., Vandervorst, C., et al. (1992) Evidence for a Systemic Immune Activation during Depression: Results of Leukocyte Enumeration by Flow Cytometry in Conjunction with Monoclonal Antibody Staining. Psychological Medicine, 22, 45-53.

[30]   Maes, M. (1999) Major Depression and Activation of the Inflammatory Response System. In: Dantzer, R., Wollman, E.E. and Yirmiya, R., Eds., Cytokines, Stress, and Depression, Springer, Berlin, 25-46.

[31]   Sluzewska, A. (1999) Indicators of Immune Activation in Depressed Patients. In: Dantzer, R., Wollman, E.E. and Yirmiya, R., Eds., Cytokines, Stress, and Depression, Springer, Berlin, 59-73.

[32]   Levine, J., Barak, Y., Chengappa, K., Rapoport, A., Rebey, M. and Barak, V. (1999) Cerebrospinal Cytokine Levels in Patients with Acute Depression. Neuropsychobiology, 40, 171-176.

[33]   Lindqvist, D., Janelidze, S., Hagell, P., Erhardt, S., Samuelsson, M., Minthon, L., et al. (2009) Interleukin-6 Is Elevated in the Cerebrospinal Fluid of Suicide Attempters and Related to Symptom Severity. Biological Psychiatry, 66, 287-292.

[34]   Martinez, J.M., Garakani, A., Yehuda, R. and Gorman, J.M. (2012) Proinflammatory and “Resiliency” Proteins in the CSF of Patients with Major Depression. Depression and Anxiety, 29, 32-38.

[35]   Linnoila, M., Whorton, A.R., Rubinow, D.R., Cowdry, R.W., Ninan, P.T. and Waters, R.N. (1983) CSF Prostaglandin Levels in Depressed and Schizophrenic Patients. Archives of General Psychiatry, 40, 405-406.

[36]   Calabrese, J.R., Skwerer, R.G., Barna, B., Gulledge, A.D., Valenzuela, R., Butkus, A., et al. (1986) Depression, Immunocompetence, and Prostaglandins of the E Series. Psychiatry Research, 17, 41-47.

[37]   Ohishi, K., Ueno, R., Nishino, S., Sakai, T. and Hayaishi, O. (1988) Increased Level of Salivary Prostaglandins in Patients with Major Depression. Biological Psychiatry, 23, 326-334.

[38]   Nishino, S., Ueno, R., Ohishi, K., Sakai, T. and Hayaishi, O. (1989) Salivary Prostaglandin Concentrations: Possible State Indicators for Major Depression. The American Journal of Psychiatry, 146, 365-368.

[39]   Capuron, L., Gumnick, J.F., Musselman, D.L., Lawson, D.H., Reemsnyder, A., Nemeroff, C.B., et al. (2002) Neurobehavioral Effects of Interferon-α in Cancer Patients: Phenomenology and Paroxetine Responsiveness of Symptom Dimensions. Neuropsychopharmacology, 26, 643-652.

[40]   Maddock, C., Landau, S., Barry, K., Maulayah, P., Hotopf, M., Cleare, A., et al. (2005) Psychopathological Symptoms during Interferon-α and Ribavirin Treatment: Effects on Virologic Response. Molecular Psychiatry, 10, 332-333.

[41]   Raison, C.L., Borisov, A.S., Broadwell, S.D., Capuron, L., Woolwine, B.J., Jacobson, I.M., et al. (2005) Depression during Pegylated Interferon-Alpha plus Ribavirin Therapy: Prevalence and Prediction. Journal of Clinical Psychiatry, 66, 41-48.

[42]   Lotrich, F.E. (2009) Major Depression during Interferon-α Treatment: Vulnerability and Prevention. Dialogues in Clinical Neuroscience, 11, 417-425.

[43]   Charo, I.F. and Ransohoff, R.M. (2006) The Many Roles of Chemokines and Chemokine Receptors in Inflammation. The New England Journal of Medicine, 354, 610-621.

[44]   Yirmiya, R. and Goshen, I. (2011) Immune Modulation of Learning, Memory, Neural Plasticity and Neurogenesis. Brain, Behavior, and Immunity, 25, 181-213.

[45]   Haroon, E., Raison, C.L. and Miller, A.H. (2012) Psychoneuroimmunology Meets Neuropsychopharmacology: Translational Implications of the Impact of Inflammation on Behavior. Neuropsychopharmacology, 37, 137-162.

[46]   Yirmiya, R., Weidenfeld, J., Pollak, Y., Morag, M., Morag, A., Avitsur, R., et al. (1999) Cytokines, “Depression Due to a General Medical Condition,” and Antidepressant Drugs. In: Dantzer, R., Wollman, E.E. and Yirmiya, R., Eds., Cytokines, Stress, and Depression, Springer, Berlin, 283-316.

[47]   Yirmiya, R., Pollak, Y., Morag, M., Reichenberg, A., Barak, O., Avitsur, R., et al. (2000) Illness, Cytokines, and Depression. Annals of the New York Academy of Sciences, 917, 478-487.

[48]   Sheng, W., Zong, Y., Mohammad, A., et al. (2011) Pro-inflammatory Cytokines and Lipopolysaccharide Induce Changes in Cell Morphology, and Upregulation of ERK1/2, iNOS and sPLA2-IIA Expression in Astrocytes and Microglia. Journal of Neuroinflammation, 8, 121.

[49]   Muñoz-Fernández, M.A. and Fresno, M. (1998) The Role of Tumour Necrosis Factor, Interleukin 6, Interferon-γ and Inducible Nitric Oxide Synthase in the Development and Pathology of the Nervous System. Progress in Neurobiology, 56, 307-340.

[50]   Capuron, L., Ravaud, A., Miller, A.H. and Dantzer, R. (2004) Baseline Mood and Psychosocial Characteristics of Patients Developing Depressive Symptoms during Interleukin-2 and/or Interferon-Alpha Cancer Therapy. Brain, Behavior, and Immunity, 18, 205-213.

[51]   Capuron, L., Fornwalt, F.B., Knight, B.T., Harvey, P.D., Ninan, P.T. and Miller, A.H. (2009) Does Cytokine-Induced Depression Differ from Idiopathic Major Depression in Medically Healthy Individuals? Journal of Affective Disorders, 119, 181-185.

[52]   Schiepers, O.J., Wichers, M.C. and Maes, M. (2005) Cytokines and Major Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 201-217.

[53]   Marques-Deak, A.H., Neto, F.L., Dominguez, W.V., et al. (2007) Cytokine Profiles in Women with Different Subtypes of Major Depressive Disorder. Journal of Psychiatric Research, 41, 152-159.

[54]   Tsao, C.W., Lin, Y.S., Chen, C.C., Bai, C.H. and Wu, S.R. (2006) Cytokines and Serotonin Transporter in Patients with Major Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30, 899-905.

[55]   Anisman, H., Ravindran, A.V., Griffiths, J. and Merali, Z. (1999) Endocrine and Cytokine Correlates of Major Depression and Dysthymia with Typical or Atypical Features. Molecular Psychiatry, 4, 182-188.

[56]   Maes, M., Lin, A.H., Delmeire, L., et al. (1999) Elevated Serum Interleukin-6 (IL-6) and IL-6 Receptor Concentrations in Posttraumatic Stress Disorder Following Accidental Man-Made Traumatic Events. Biological Psychiatry, 45, 833-839.

[57]   Rajagopalan, S., Brook, R., Rubenfire, M., Pitt, E., Young, E. and Pitt, B. (2001) Abnormal Brachial Artery Flow-Mediated Vasodilation in Young Adults with Major Depression. The American Journal of Cardiology, 88, 196-198.

[58]   Pace, T.W., Mletzko, T.C., Alagbe, O., et al. (2006) Increased Stress-Induced Inflammatory Responses in Male Patients with Major Depression and Increased Early Life Stress. American Journal of Psychiatry, 163, 1630-1633.

[59]   Kaestner, F., Hettich, M., Peters, M., et al. (2005) Different Activation Patterns of Proinflammatory Cytokines in Melancholic and Non-Melancholic Major Depression Are Associated with HPA Axis Activity. Journal of Affective Disorders, 87, 305-311.

[60]   Suarez, E.C., Krishnan, R.R. and Lewis, J.G. (2003) The Relation of Severity of Depressive Symptoms to Monocyte-Associated Proinflammatory Cytokines and Chemokines in Apparently Healthy Men. Psychosomatic Medicine, 65, 362-368.

[61]   Schlatter, J., Ortuno, F. and Cervera-Enguix, S. (2001) Differences in Interleukins’ Patterns between Dysthymia and Major Depression. European Psychiatry, 16, 317-319.

[62]   Smith, R. (1991) The Macrophage Theory of Depression. Medical Hypotheses, 35, 298-306.

[63]   Kim, Y.K. and Maes, M. (2003) The Role of the Cytokine Network in Psychological Stress. Acta Neuropsychiatrica, 15, 148-155.

[64]   Kim, Y.-K., Na, K.-S., Shin, K.-H., Jung, H.-Y., Choi, S.-H. and Kim, J.-B. (2007) Cytokine Imbalance in the Pathophysiology of Major Depressive Disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 1044-1053.

[65]   Zellweger, M.J., Osterwalder, R.H., Langewitz, W. and Pfisterer, M.E. (2004) Coronary Artery Disease and Depression. European Heart Journal, 25, 3-9.

[66]   Bonaccorso, S., Marino, V., Biondi, M., Grimaldi, F., Ippoliti, F. and Maes, M. (2002) Depression Induced by Treatment with Interferon-Alpha in Patients Affected by Hepatitis C Virus. Journal of Affective Disorders, 72, 237-241.

[67]   Blotta, M.H., DeKruyff, R.H. and Umetsu, D.T. (1997) Corticosteroids Inhibit IL-12 Production in Human Monocytes and Enhance Their Capacity to Induce IL-4 Synthesis in CD4+ Lymphocytes. The Journal of Immunology, 158, 5589-5595.

[68]   Pace, T.W., Hu, F. and Miller, A.H. (2007) Cytokine-Effects on Glucocorticoid Receptor Function: Relevance to Glucocorticoid Resistance and the Pathophysiology and Treatment of Major Depression. Brain, Behavior, and Immunity, 21, 9-19.

[69]   Monje, M.L., Toda, H. and Palmer, T.D. (2003) Inflammatory Blockade Restores Adult Hippocampal Neurogenesis. Science, 302, 1760-1765.

[70]   Keohane, A., Ryan, S., Maloney, E., Sullivan, A.M. and Nolan, Y.M. (2010) Tumour Necrosis Factor-α Impairs Neuronal Differentiation but Not Proliferation of Hippocampal Neural Precursor Cells: Role of Hes1. Molecular and Cellular Neuroscience, 43, 127-135.

[71]   Koo, J.W. and Duman, R.S. (2008) IL-1Beta Is an Essential Mediator of the Antineurogenic and Anhedonic Effects of Stress. Proceedings of the National Academy of Sciences of the United States of America, 105, 751-756.

[72]   Kuzumaki, N., Ikegami, D., Imai, S., et al. (2010) Enhanced IL-1β Production in Response to the Activation of Hippocampal Glial Cells Impairs Neurogenesis in Aged Mice. Synapse, 64, 721-728.

[73]   Ben-Hur, T., Ben-Menachem, O., Furer, V., Einstein, O., Mizrachi-Kol, R. and Grigoriadis, N. (2003) Effects of Proinflammatory Cytokines on the Growth, Fate, and Motility of Multipotential Neural Precursor Cells. Molecular and Cellular Neuroscience, 24, 623-631.

[74]   Dybedal, I., Bryder, D., Fossum, A., Rusten, L.S. and Jacobsen, S. (2001) Tumor Necrosis Factor (TNF)-Mediated Activation of the p55 TNF Receptor Negatively Regulates Maintenance of Cycling Reconstituting Human Hematopoietic Stem Cells. Blood, 98, 1782-1791.

[75]   Iosif, R.E., Ekdahl, C.T., Ahlenius, H., et al. (2006) Tumor Necrosis Factor Receptor 1 Is a Negative Regulator of Progenitor Proliferation in Adult Hippocampal Neurogenesis. The Journal of Neuroscience, 26, 9703-9712.

[76]   Masand, P.S. and Gupta, S. (1999) Selective Serotonin-Reuptake Inhibitors: An Update. Harvard Review of Psychiatry, 7, 69-84.

[77]   Vaswani, M., Linda, F.K. and Ramesh, S. (2003) Role of Selective Serotonin Reuptake Inhibitors in Psychiatric Disorders: A Comprehensive Review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 85-102.

[78]   Perry, E.K., Marshall, E., Blessed, G., Tomlinson, B. and Perry, R. (1983) Decreased Imipramine Binding in the Brains of Patients with Depressive Illness. The British Journal of Psychiatry, 142, 188-192.

[79]   Arango, V., Underwood, M.D., Gubbi, A.V. and Mann, J. (1995) Localized Alterations in Pre-and Postsynaptic Serotonin Binding Sites in the Ventrolateral Prefrontal Cortex of Suicide Victims. Brain Research, 688, 121-133.

[80]   Arango, V., Underwood, M.D., Boldrini, M., Tamir, H., et al. (2001) Serotonin 1A Receptors, Serotonin Transporter Binding and Serotonin Transporter mRNA Expression in the Brainstem of Depressed Suicide Victims. Neuropsychopharmacology, 25, 892-903.

[81]   Malison, R.T., Price, L.H., Berman, R., et al. (1998) Reduced Brain Serotonin Transporter Availability in Major Depression as Measured by [123I]-2β-carbomethoxy-3β-(4-Iodophenyl) Tropane and Single Photon Emission Computed Tomography. Biological Psychiatry, 44, 1090-1098.

[82]   Mann, J.J., Huang, Y., Underwood, M.D., et al. (2000) A Serotonin Transporter Gene Promoter Polymorphism (5-HTTLPR) and Prefrontal Cortical Binding in Major Depression and Suicide. Archives of General Psychiatry, 57, 729-738.

[83]   Willeit, M., Praschak-Rieder, N., Neumeister, A., et al. (2000) [123I]-β-CIT SPECT Imaging Shows Reduced Brain Serotonin Transporter Availability in Drug-Free Depressed Patients with Seasonal Affective Disorder. Biological Psychiatry, 47, 482-489.

[84]   Song, C., Merali, Z. and Anisman, H. (1999) Variations of Nucleus Accumbens Dopamine and Serotonin Following Systemic Interleukin-1, Interleukin-2 or Interleukin-6 Treatment. Neuroscience, 88, 823-836.

[85]   De La Garza, R. and Asnis, G.M. (2003) The Non-Steroidal Anti-Inflammatory Drug Diclofenac Sodium Attenuates IFN-α Induced Alterations to Monoamine Turnover in Prefrontal Cortex and Hippocampus. Brain Research, 977, 70-79.

[86]   Frenois, F., Moreau, M., O’Connor, J., et al. (2007) Lipopolysaccharide Induces Delayed FosB/DeltaFosB Immunostaining within the Mouse Extended Amygdala, Hippocampus and Hypothalamus, That Parallel the Expression of Depressive-Like Behavior. Psychoneuroendocrinology, 32, 516-531.

[87]   O’connor, J., Lawson, M., Andre, C., Moreau, M., Lestage, J., Castanon, N., et al. (2009) Lipopolysaccharide-Induced Depressive-Like Behavior Is Mediated by Indoleamine 2,3-Dioxygenase Activation in Mice. Molecular Psychiatry, 14, 511-522.

[88]   Loftis, J.M., Patterson, A.L., Wilhelm, C.J., McNett, H., Morasco, B.J., Huckans, M., et al. (2013) Vulnerability to Somatic Symptoms of Depression during Interferon-Alpha Therapy for Hepatitis C: A 16-Week Prospective Study. Journal of Psychosomatic Research, 74, 57-63.

[89]   Abe, S., Hori, T., Suzuki, T., Baba, A., Shiraishi, H. and Yamamoto, T. (1999) Effects of Chronic Administration of Interferon Alpha A/D on Serotonergic Receptors in Rat Brain. Neurochemical Research, 24, 359-363.

[90]   Bull, S.J., Huezo-Diaz, P., Binder, E.B., Cubells, J.F., et al. (2009) Functional Polymorphisms in the Interleukin-6 and Serotonin Transporter Genes, and Depression and Fatigue Induced by Interferon-Alpha and Ribavirin Treatment. Molecular Psychiatry, 14, 1095-1104.

[91]   Morikawa, O., Sakai, N., Obara, H. and Saito, N. (1998) Effects of Interferon-Alpha, Interferon-Gamma and cAMP on the Transcriptional Regulation of the Serotonin Transporter. European Journal of Pharmacology, 349, 317-324.

[92]   Mossner, R., Heils, A., Stober, G., Okladnova, O., Daniel, S. and Lesch, K.P. (1998) Enhancement of Serotonin Transporter Function by Tumor Necrosis Factor Alpha but Not by Interleukin-6. Neurochemistry International, 33, 251-254.

[93]   Sakai, K., Hasegawa, C., Okura, M., Morikawa, O., et al. (2003) Novel Variants of Murine Serotonin Transporter mRNA and the Promoter Activity of Its Upstream Site. Neuroscience Letters, 342, 175-178.

[94]   Tsao, C.W., Lin, Y.S., Cheng, J.T., Lin, C.F., Wu, H.T., et al. (2008) Interferon-Alpha-Induced Serotonin Uptake in Jurkat T Cells via Mitogen-Activated Protein Kinase and Transcriptional Regulation of the Serotonin Transporter. Journal of Psychopharmacology, 22, 753-760.

[95]   Raison, C.L., Demetrashvili, M., Capuron, L. and Miller, A.H. (2005) Neuropsychiatric Adverse Effects of Interferon-Alpha: Recognition and Management. CNS Drugs, 19, 105-123.

[96]   McNutt, M.D., Liu, S., Manatunga, A., Royster, E.B., Raison, C.L., Woolwine, B.J., et al. (2012) Neurobehavioral Effects of Interferon-Alpha in Patients with Hepatitis-C: Symptom Dimensions and Responsiveness to Paroxetine. Neuropsychopharmacology, 37, 1444-1454.

[97]   Capuron, L., Gumnick, J.F., Musselman, D.L., Lawson, D.H., et al. (2002) Neurobehavioral Effects of Interferon-Alpha in Cancer Patients: Phenomenology and Paroxetine Responsiveness of Symptom Dimensions. Neuropsychopharmacology, 26, 643-652.

[98]   Epstein, J., Pan, H., Kocsis, J.H., Yang, Y., Butler, T., Chusid, J., et al. (2006) Lack of Ventral striatal Response to Positive Stimuli in Depressed versus Normal Subjects. American Journal of Psychiatry, 163, 1784-1790.

[99]   Capuron, L., Pagnoni, G., Demetrashvili, M.F., Lawson, D.H., et al. (2007) Basal Ganglia Hypermetabolism and Symptoms of Fatigue during Interferon-Alpha Therapy. Neuropsychopharmacology, 32, 2384-2392.

[100]   Capuron, L., Pagnoni, G., Drake, D.F., Woolwine, B.J., et al. (2012) Dopaminergic Mechanisms of Reduced Basal Ganglia Responses to Hedonic Reward during Interferon Alfa Administration. Archives of General Psychiatry, 69, 1044-1053.

[101]   Furman, D.J., Hamilton, J.P. and Gotlib, I.H. (2011) Frontostriatal Functional Connectivity in Major Depressive Disorder. Biology of Mood & Anxiety Disorders, 1, 11.

[102]   Capuron, L., Ravaud, A. and Dantzer, R. (2001) Timing and Specificity of the Cognitive Changes Induced by Interleukin-2 and Interferon-Alpha Treatments in Cancer Patients. Psychosomatic Medicine, 63, 376-386.

[103]   Capuron, L., Fornwalt, F.B., Knight, B.T., Harvey, P.D., Ninan, P.T. and Miller, A.H. (2009) Does Cytokine-Induced Depression Differ from Idiopathic Major Depression in Medically Healthy Individuals? Journal of Affective Disorders, 119, 181-185.

[104]   Majer, M., Welberg, L.A., Capuron, L., Pagnoni, G., Raison, C.L. and Miller, A.H. (2008) IFN-Alpha-Induced Motor Slowing Is Associated with Increased Depression and Fatigue in Patients with Chronic Hepatitis C. Brain, Behavior, and Immunity, 22, 870-880.

[105]   Felger, J.C. and Miller, A.H. (2012) Cytokine Effects on the Basal Ganglia and Dopamine Function: The Subcortical Source of Inflammatory Malaise. Frontiers in Neuroendocrinology, 33, 315-327.

[106]   Roy, A., Linnoila, M., Karoum, F. and Pickar, D. (1986) Relative Activity of Metabolic Pathways for Norepinephrine in Endogenous Depression. Acta Psychiatrica Scandinavica, 73, 624-628.

[107]   Gudmundsson, P., Skoog, I., Waern, M., Blennow, K., Palsson, S., Rosengren, L., et al. (2007) The Relationship between Cerebrospinal Fluid Biomarkers and Depression in Elderly Women. The American Journal of Geriatric Psychiatry, 15, 832-838.

[108]   Dunn, A.J., Wang, J. and Ando, T. (1999) Effects of Cytokines on Cerebral Neurotransmission. Comparison with the Effects of Stress. Advances in Experimental Medicine and Biology, 461, 117-127.

[109]   Dunn, A.J., Swiergiel, A.H. and de Beaurepaire, R. (2005) Cytokines as Mediators of Depression: What Can We Learn from Animal Studies? Neuroscience and Biobehavioral Reviews, 29, 891-909.

[110]   Raison, C.L., Borisov, A.S., Majer, M., Drake, D.F., Pagnoni, G., Woolwine, B.J., et al. (2009) Activation of Central Nervous System Inflammatory Pathways by Interferon-Alpha: Relationship to Monoamines and Depression. Biological Psychiatry, 65, 296-303.

[111]   Mehler, M.F. and Kessler, J.A. (1997) Hematolymphopoietic and Inflammatory Cytokines in Neural Development. Trends in Neurosciences, 20, 357-365.

[112]   Zhao, B. and Schwartz, J.P. (1998) Involvement of Cytokines in Normal CNS Development and Neurological Diseases: Recent Progress and Perspectives. Journal of Neuroscience Research, 52, 7-16.<7::AID-JNR2>3.0.CO;2-I

[113]   Patel, H.C., Boutin, H. and Allan, S.M. (2003) Interleukin-1 in the Brain: Mechanisms of Action in Acute Neurodegeneration. Annals of the New York Academy of Sciences, 992, 39-47.

[114]   Kenis, G., Prickaerts, J., van Os, J., Koek, G.H., et al. (2011) Depressive Symptoms Following Interferon-Alpha Therapy: Mediated by Immune-Induced Reductions in Brain-Derived Neurotrophic Factor? The International Journal of Neuropsychopharmacology, 14, 247-253.

[115]   Sarchiapone, M., Carli, V., Roy, A., Iacoviello, L., et al. (2008) Association of Polymorphism (Val66Met) of Brain-Derived Neurotrophic Factor with Suicide Attempts in Depressed Patients. Neuropsychobiology, 57, 139-145.

[116]   Aguilera, M., Arias, B., Wichers, M., Barrantes-Vidal, N., et al. (2009) Early Adversity and 5-HTT/BDNF Genes: New Evidence of Gene-Environment Interactions on Depressive Symptoms in a General Population. Psychological Medicine, 39, 1425-1432.

[117]   Arborelius, L., Owens, M.J., Plotsky, P. and Nemeroff, C.B. (1999) The Role of Corticotropin-Releasing Factor in Depression and Anxiety Disorders. The Journal of Endocrinology, 160, 1-12.

[118]   Blazer, D.G., Kessler, R.C., McGonagle, K.A. and Swartz, M.S. (1994) The Prevalence and Distribution of Major Depression in a National Community Sample: The National Comorbidity Survey. American Journal of Psychiatry, 151, 979-986.

[119]   Sluzewska, A., Sobieska, M. and Rybakowski, J.K. (1997) Changes in Acute-Phase Proteins during Lithium Potentiation of Antidepressants in Refractory Depression. Neuropsychobiology, 35, 123-127.

[120]   Danese, A., Pariante, C.M., Caspi, A., Taylor, A. and Poulton, R. (2007) Childhood Maltreatment Predicts Adult Inflammation in a Life-Course Study. Proceedings of the National Academy of Sciences of the United States of America, 104, 1319-1324.

[121]   Danese, A., Moffitt, T.E., Pariante, C.M., Ambler, A., Poulton, R. and Caspi, A. (2008) Elevated Inflammation Levels in Depressed Adults with a History of Childhood Maltreatment. Archives of General Psychiatry, 65, 409-415.

[122]   Berk, M., Wadee, A., Kuschke, R. and O’Neill-Kerr, A. (1997) Acute Phase Proteins in Major Depression. Journal of Psychosomatic Research, 43, 529-534.

[123]   Healy, D., Calvin, J., Whitehouse, A., White, W., Wilton-Cox, H., Theodorou, A., et al. (1991) Alpha-1-Acid Glycoprotein in Major Depressive and Eating Disorders. Journal of Affective Disorders, 22, 13-20.

[124]   Maes, M., Wauters, A., Neels, H., Scharpé, S., et al. (1995) Total Serum Protein and Serum Protein Fractions in Depression: Relationships to Depressive Symptoms and Glucocorticoid Activity. Journal of Affective Disorders, 34, 61-69.

[125]   Maes, M. (1995) Evidence for an Immune Response in Major Depression: A Review and Hypothesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19, 11-38.

[126]   Maes, M., Scharpe, S., Bosmans, E., Vandewoude, M., et al. (1992) Disturbances in Acute Phase Plasma Proteins during Melancholia: Additional Evidence for the Presence of an Inflammatory Process during That Illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 16, 501-515.

[127]   Maes, M., Meltzer, H.Y., Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R., et al. (1995) Increased Plasma Concentrations of Interleukin-6, Soluble Interleukin-6, Soluble Interleukin-2 and Transferrin Receptor in Major Depression. Journal of Affective Disorders, 34, 301-309.

[128]   Maes, M., Bosmans, E. and Meltzer, H.Y. (1995) Immunoendocrine Aspects of Major Depression. European Archives of Psychiatry and Clinical Neuroscience, 245, 172-178.

[129]   Elliott, G.R. and Eisdorfer, C. (1982) Stress and Human Health. Springer, New York.

[130]   Herbert, T.B. and Cohen, S. (1993) Depression and Immunity: A Meta-Analytic Review. Psychological Bulletin, 113, 472-486.

[131]   Miller, A.H., Spencer, R.L., McEwen, B.S. and Stein, M. (1993) Depression, Adrenal Steroids, and the Immune system. Annals of Medicine, 25, 481-487.

[132]   Kronfol, Z., Silva, J., Greden, J., Dembinski, S. and Carroll, B. (1982) Cell-Mediated Immunity in Melancholia. Psychosomatic Medicine, 44, 304.

[133]   Schleifer, S.J., Keller, S.E., Meyerson, A.T., Raskin, M.J., Davis, K.L. and Stein, M. (1984) Lymphocyte Function in Major Depressive Disorder. Archives of General Psychiatry, 41, 484-486.

[134]   Kronfol, Z., Silva, J., Greden, J., Dembinski, S., Gardner, R. and Carroll, B. (1983) Impaired Lymphocyte Function in Depressive Illness. Life Sciences, 33, 241-247.

[135]   Van Snick, J. (1990) Interleukin-6: An Overview. Annual Review of Immunology, 8, 253-278.

[136]   Weisse, C.S. (1992) Depression and Immunocompetence: A Review of the Literature. Psychological Bulletin, 111, 475-489.

[137]   Maes, M., Scharpé, S., Van Grootel, L., Uyttenbroeck, W., Cooreman, W., Cosyns, P., et al. (1992) Higher α 1-Antitrypsin, Haptoglobin, Ceruloplasmin and Lower Retinol Binding Protein Plasma Levels during Depression: Further Evidence for the Existence of an Inflammatory Response during That Illness. Journal of affective disorders, 24, 183-192.

[138]   Song, C., Dinan, T. and Leonard, B. (1994) Changes in Immunoglobulin, Complement and Acute Phase Protein Levels in the Depressed Patients and Normal Controls. Journal of Affective Disorders, 30, 283-288.

[139]   Stein, M., Miller, A.H. and Trestman, R.L. (1991) Depression and the Immune System.