Back
 OJFD  Vol.6 No.4 , December 2016
Inverse Source Locating Method Based on Graphical Analysis of Dye Plume Images in a Turbulent Flow
Abstract: The inverse estimation of a source location of pollutant released into a turbulent flow is a probability problem instead of a deterministic one, as the turbulent flow is chaotic and irreversible. However, researches can be conducted to provide helpful instructions to the possible source location with corresponding uncertainty. This study aims to propose a method of inverse estimation of a passive-scalar source location. Experimental investigation of the dye plume characteristics released into a fully-developed turbulent flow is performed in a water channel. A planar laser-induced fluorescence (PLIF) technique is used to obtain two-dimensional images of spreading dye plumes at a bulk Reynolds number of 20,000. The distributions of high concentration areas in the PLIF images are chosen as features that characterize the traveling (diffusion) distance or time from the dye source. Graphical analysis is used to extract these high concentration areas. The procedure of graphical analysis has three steps: 1) binarization using a threshold to extract high concentration dye patches; 2) labeling individual high-concentration dye patches in the binarized images; and 3) pixel-counting to measure the area and perimeter of each dye patch. We examine the variations of fractal dimension of patches, and the fractal dimension is observed to be almost constant irrespective of the distance from the source. The kurtosis of the probability density function curve of the logarithm dimensionless dye patch areas is found to be related with the downstream diffusion distance, based on which an inverse estimation method to locate a passive-scalar point source is proposed and evaluated.
Cite this paper: Shao, Q. , Sekine, D. , Tsukahara, T. and Kawaguchi, Y. (2016) Inverse Source Locating Method Based on Graphical Analysis of Dye Plume Images in a Turbulent Flow. Open Journal of Fluid Dynamics, 6, 343-360. doi: 10.4236/ojfd.2016.64026.
References

[1]   Davidson, P.A. (2004) Turbulence, an Introduction for Scientists and Engineers. Oxford University Press, New York.

[2]   Sutton, O.G. (1953) Micrometeorology. McGraw-Hill Book Company, New York.

[3]   Batchelor, G.K. and Townsend, A.A. (1956) Turbulent Diffusion. Surveys in Mechanics. Cambridge University Press, New York.

[4]   Batchelor, G.K. and Howells, I.D. (1959) Small-Scale Variation of Convected Quantities Like Temperature in Turbulent Fluid. Journal of Fluid Mechanics, 5, 113-134.
https://doi.org/10.1017/S002211205900009X

[5]   Csanady, G.T. (1967) Variance of Local Concentration Fluctuations. Boundary Layers and Turbulence. Physics of Fluids Supplement, 10, S76-S78. https://doi.org/10.1063/1.1762509

[6]   Csanady, G.T. (1967) Concentration Fluctuations in Turbulent Diffusion. Journal of the Atmosphere Sciences, 24, 21-28.
https://doi.org/10.1175/1520-0469(1967)024<0021:CFITD>2.0.CO;2

[7]   Fackrell, J.E. and Robins, A.G. (1982) Concentration Fluctuations and Fluxes in Plumes from Point Source in a Turbulent Boundary Layer. Journal of Fluid Mechanics, 117, 1-26.
https://doi.org/10.1017/S0022112082001499

[8]   Crimaldi, J.P., Wiley, M.B. and Koseff, J.R. (2002) The Relationship Between Mean and Instantaneous Structure in Turbulent Passive Scalar Plumes. Journal of Turbulence, 3, 1-24.

[9]   Lakshmi, P.D. (2000) Statistical Characteristics of Turbulent Chemical Plumes. Ph.D. Dissertation, Georgia Institute of Technology, Georgia.

[10]   Jones, C.D. (1983) On the Structure of Instantaneous Plumes in the Atmosphere. Journal of Hazardous Materials, 7, 87-112. https://doi.org/10.1016/0304-3894(83)80001-6

[11]   Finelli, C.M., Pentcheff, N.D., Zimmer-Faust, R.K. and Wethey, D.S. (1999) Odor Transport in Turbulent Flows: Constraints on Animal Navigation. Limnology and Oceanography, 44, 1056-1071. https://doi.org/10.4319/lo.1999.44.4.1056

[12]   Martin, D.O. (1976) Comment on “The Change of Concentration Standard Deviations with Distance”. Journal of the Air Pollution Control Association, 26, 145-147.
https://doi.org/10.1080/00022470.1976.10470238

[13]   McMullen, R.W. (1975) The Change of Concentration Standard Deviations with Distance. Journal of the Air Pollution Control Association, 25, 1057-1058.
https://doi.org/10.1080/00022470.1975.10470179

[14]   Webster, D.R., Roberts, P.J.W. and Ra’ad, L. (2001) Simultaneous DPTV/PLIF Measurements of a Turbulent Jet. Experiments in Fluids, 30, 65-72. https://doi.org/10.1007/s003480000137

[15]   Crimaldi, J.P. and Koseff, J.R. (2001) High-Resolution Measurements of the Spatial and Temporal Scalar Structure of a Turbulent Plume. Experiments in Fluids, 31, 90-102.
https://doi.org/10.1007/s003480000263

[16]   Webster, D.R, Rahman, S. and Dasi, L.P. (2001) On the Usefulness of Bilateral Comparison to Tracking Turbulent Chemical Odor Plumes. Limnology and Oceanography, 46, 1048- 1053.
https://doi.org/10.4319/lo.2001.46.5.1048

[17]   Tsukahara, T., Oyagi, K. and Kawaguchi, Y. (2016) Estimation Method to Identify Scalar Point Source in Turbulent Flow Based on Taylor’s Diffusion Theory. Environment Fluid Mechanics, 16, 521-537. https://doi.org/10.1007/s10652-015-9436-x

[18]   Endo, M., Tsukahara, T. and Kawaguchi, Y. (2015) Relationship between Diffusing- Material Lumps and Organized Structures in Turbulent Flow. Proceedings of the 5th International AJK Joint Fluids Engineering Conference, Seoul, 26-31 July 2015, 1747-1753.

[19]   Moore, P.A. and Atema, J. (1991) Spatial Information in the Three-Dimensional Fine Structure of an Aquatic Odor Plume. The Biological Bulletin, 181, 408-418.
https://doi.org/10.2307/1542361

[20]   Webster, D.R. and Weissburg, M.J. (2001) Chemosensory Guidance Cues in a Turbulent Chemical Odor Plume. Limnology and Oceanography, 46, 1034-1047.
https://doi.org/10.4319/lo.2001.46.5.1034

[21]   Page, J.L., Dickman, B.D. Webster, D.R. and Weissburg, M.J. (2011) Getting Ahead: Context- Dependent Responses to Odor Filaments Drives Along-Stream Progress during Odor Tracking in Blue Crabs. Journal of Experiment Biology, 214, 1498-1512. https://doi.org/10.1242/jeb.049312

[22]   Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66. https://doi.org/10.1109/TSMC.1979.4310076

[23]   He, L., Chao, Y., Suzuki, K. and Wu, K. (2009) Fast Connected-Component Labeling. Pattern Recognition, 42, 1977-1987. https://doi.org/10.1016/j.patcog.2008.10.013

[24]   Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. W.H. Freeman & Company, New York.

[25]   Mandelbrot, B.B. (1977) Fractals: Form, Chance, and Dimension. W.H. Freeman & Company, New York.

[26]   Sreenivasan, K.R. and Meneveau, C. (1986) The Fractal Facets of Turbulence. Journal of Fluid Mechanics, 173, 357-386. https://doi.org/10.1017/S0022112086001209

[27]   Abe, H., Kawamura, H. and Matsuo, Y. (2001) Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow with Respect to the Reynolds Number Dependence. Journal of Fluids Engineering, 123, 382-393. https://doi.org/10.1115/1.1366680

[28]   Tsukahara, T., Iwamoto, K. and Kawamura, H. (2007) Evolution of Material Line in Turbulent Channel Flow. Proceedings of the 5th International Symposium on Turbulence and Shear Flow Phenomena, Munich, 27-29 August 2007, 549-554.

[29]   De Carlo, L.T. (1997) On the Meaning and Use of Kurtosis. Psychological Methods, 2, 292- 307.
https://doi.org/10.1037/1082-989X.2.3.292

[30]   Briggs, G.A. (1973) Diffusion Estimation for Small Emissions. Annual Report, Report ATDL-106, USDOC-NOAA, Air Resources Atmospheric Turbulence and Diffusion Laboratory.

 
 
Top