Back
 ENG  Vol.8 No.12 , December 2016
Effect of Nozzle Shaped Triangular Longitudinal Fins on Heat Transfer
Abstract: Fins are used for enhancement of heat transfer. Triangular fins are arranged in form of nozzle and heat transfer coefficient is calculated. Angle of taper of nozzle is changed i.e. angles of triangles are varied and then heat transfer coefficient is calculated. Total finned area of all fins is almost the same. Number of fins and orientation of fins are different. In this study to calculate heat transfer coefficient of unfinned area open channel is considered where density and pressure are constant. This study shows that heat transfer is enhanced by 213%, 268% and 339% using 30°, 45° and 60° fins. Computational results show that heat transfer is enhanced by 108%, 130%, 146% using 30°, 45° and 60° fins.
Cite this paper: Shravya, P. (2016) Effect of Nozzle Shaped Triangular Longitudinal Fins on Heat Transfer. Engineering, 8, 831-836. doi: 10.4236/eng.2016.812075.
References

[1]   Tijing, L.D., Pak, B.C., Baek, B.J. and Lee, D.H. (2006) A Study on Heat Transfer Enhancement Using Straight and Twisted Internal Fin Inserts. International Communications in Heat and Mass Transfer, 33, 719-726.
https://doi.org/10.1016/j.icheatmasstransfer.2006.02.006

[2]   Chang, L.-M., Wang, L.-B., Song, K.-W., Sun, D.-L. and Fan, J.-F. (2009) Numerical Study of the Relationship between Heat Transfer Enhancement and Absolute Vorticity Flux along Main Flow Direction in a Channel Formed by a Flat Tube Bank Fin with Vortex Generators. International Journal of Heat and Mass Transfer, 52, 1794-1801.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.029

[3]   Foong, A.J.L., Ramesh, N. and Chandratilleke, T.T. (2009) Laminar Convective Heat Transfer in a Micro Channel with Internal Longitudinal Fins. International Journal of Thermal Sciences, 48, 1908-1913.
https://doi.org/10.1016/j.ijthermalsci.2009.02.015

[4]   Kundu, B. (2007) Performance and Optimum Design Analysis of Longitudinal and Pin Fins with Simultaneous Heat and Mass Transfer: Unified and Comparative Investigations. Journal of Applied Thermal Engineering, 27, 976-987.
https://doi.org/10.1016/j.applthermaleng.2006.08.003

[5]   Joneidi, A.A., Ganji, D.D. and Babaelahi, M. (2009) Differential Transformation Method to Determine Fin Efficiency of Convective Straight Fins with Temperature Dependent Thermal Conductivity. Journal of International Communications in Heat and Mass Transfer, 36, 757-762.

[6]   Wu, J.M. and Tao, W.Q. (2007) Investigated Laminar Convective Heat Transfer in Fin-and-Tube Heat Exchanger in Aligned Arrangement with Longitudinal Vortex Generator from the Viewpoint of Field Synergy Principle. Journal of Applied Thermal Engineering, 27, 2609-2617.

[7]   Fan, J.F., Ding, W.K., Zhang, J.F., He, Y.L. and Tao, W.Q. (2008) Study of a Performance Evaluation Plot of Enhancement Heat Transfer Techniques Oriented for Energy Saving. International Journal of Heat and Mass Transfer, 52, 33-44.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.006

[8]   Haldar, S.C., Kochhar, G.S. and Manohar, K. (2007) Laminar Free Convection about a Horizontal Cylinder with Longitudinal Fins of Finite Thickness. International Journal of Thermal Science, 46, 692-698.
https://doi.org/10.1016/j.ijthermalsci.2006.10.001

 
 
Top