Back
 JCDSA  Vol.6 No.5 , December 2016
A High Throughput Screening Platform for Skin Tuning Properties from Natural Products: Identification of Skin Tanning Compounds
Abstract: Skin lightening and tanning are two major areas dominating the market of skincare and cosmetic products. Though the demands are originated from two different communities, the two areas share a same goal—skin colour tuning. The known safe compounds with skin colour tuning activities are limited. In contrary, Chinese medicinal herb provides a pool of natural bioactive compounds, which have been used in Asian countries for long time and have been tested for its toxicity. Here, we demonstrate a high throughput screening platform for potential compounds usable for skin colour tuning. From 147 natural compounds, 26 of them showed potential in skin tanning functions by using the high throughput melanogenesis platform based on the melanogenesis assay on B16 melanocytes. Five of them promoted melanogenesis by over 50%. Moreover, apart from 1, 8-dihydroxyanthraquinone, the other four compounds showed enhancement effect on tyrosinase activity. From the result, the compounds increased the Vmax of tyrosinase without changing the Km in a dose-dependent manner. Thus, there should be no irreversible structural change of the enzyme. Definitely, this report contributes to the development of personalization in skincare and cosmetic products.
Cite this paper: Chan, G. , Wu, K. , Wong, Z. , Fung, A. , Lin, X. , Lou, L. , Dong, T. and Tsim, K. (2016) A High Throughput Screening Platform for Skin Tuning Properties from Natural Products: Identification of Skin Tanning Compounds. Journal of Cosmetics, Dermatological Sciences and Applications, 6, 199-209. doi: 10.4236/jcdsa.2016.65025.
References

[1]   Ernst & Young (2015) Seeking Sustainable Growth: The Luxury and Cosmetics Financial Factbook 2015 Edition.

[2]   Elizabeth, T., Makino, B.S., Sujatha, S., Monya, L.S., Piyush, J., Ajay, B. and Rahul, C.M. (2013) Evaluation of a Hydroquinone-Free Skin brightening Product Using in Vitro Inhibition of Melanogenesis and Clinical Reduction of Ultraviolet-Induced Hyperpigmentation. Journal of Drugs in Dermatology, 12, 16-20.

[3]   Kumar, K.J., Vani, M.G., Wang, S.Y., Liao, J.W., Hsu, L.S., Yang, H.L. and Hseu, Y.C. (2013) In Vitro and in Vivo Studies Disclosed the Depigmenting Effects of Gallic Acid: A Novel Skin Lightening Agent for Hyperpigmentary Skin Diseases. Biofactors, 39, 259-270.
https://doi.org/10.1002/biof.1064

[4]   Chan, G.K., Wong, Z.C., Lam, K.Y., Cheng, L.K., Zhang, L.M., Lin, H., Dong, T.T. and Tsim, K.W. (2015) Edible Bird’s Nest, an Asian Health Food Supplement, Possesses Skin Lightening Activities: Identification of N-Acetylneuraminic Acid as Active Ingredient. Journal of Cosmetics, Dermatological Sciences and Applications, 5, 262-274.
https://doi.org/10.4236/jcdsa.2015.54032

[5]   Rashed, A.A. and Nazaimoon, W.M. (2010) Effect of Edible Bird’s Nest on Caco-2 Cell Proliferation. Journal of Food Technology, 8, 126-130.
https://doi.org/10.3923/jftech.2010.126.130

[6]   Roh, K.B., Lee, J., Kim, Y.S., Park, J., Kim, J.H., Lee, J. and Park, D. (2011) Mechanisms of Edible Bird’s Nest Extract-Induced Proliferation of Human Adipose-Derived Stem Cells. Evidence-Based Complementary Alternative Medicine, 2012, 1-11.
https://doi.org/10.1155/2012/797520

[7]   Chan, G.K., Zheng, K.Y., Zhu, K.Y., Dong, T.T. and Tsim, K.W. (2013) Determination of Free N-Acetylneuraminic Acid in Edible Bird Nest: A Development of Chemical Marker for Quality Control. Journal of Ethnobiology and Traditional Medicine, 120, 620-628.

[8]   Yang, M., Cheung, S.H., Li, S.C. and Cheung, H.Y. (2014) Establishment of a Holistic and Scientific Protocol for the Authentication and Quality Assurance of Edible Bird’s Nest. Food Chemistry, 151, 271-278.
https://doi.org/10.1016/j.foodchem.2013.11.007

[9]   Zhang N. (1995) The Secret Formulations and Moxibustion Figures in Dunhuang Grottoes. Gansu Culture Press, Lanzhou.

[10]   Kasraee, B., Hügin, A., Tran, C., Sorg, O. and Saura, J.H. (2004) Methimazole Is an Inhibitor of Melanin Synthesis in Cultured B16 Melanocytes. Journal of Investigative Dermatology, 122, 1338-1341.
https://doi.org/10.1111/j.0022-202X.2004.22509.x

[11]   Zhang, C., Wang, X., Shang, M., Yu, J., Xu, Y., Li, Z., Lei, L., Li, X., Cai, S. and Namba, T. (2006) Simultaneous Determination of Five Aristolochic Acids and Two Aristololactams in Aristolochia Plants by High-Performance Liquid Chromatography. Biomedical Chromatography, 20, 309-318.
https://doi.org/10.1002/bmc.565

[12]   Chang, C., Wang, Y., Yang, A. and Chiang, S. (2001) Rapidly Progressive Interstitial Renal Fibrosis Associated with Chinese Herbal Medications. American Journal of Nephrology, 21, 441-448.
https://doi.org/10.1159/000046647

[13]   Lord, G.M., Cook, T., Arlt, V.M., Schmeiser, H.H., Williams, G. and Pusey, C.D. (2001) Urothelial Malignant Disease and Chinese Herbal Nephropathy. The Lancet, 358, 1515-1516.
https://doi.org/10.1016/S0140-6736(01)06576-X

[14]   Chen, C.H., Dickman, K.G., Moriya, M., Zavadil, J., Sidorenko, V.S., Edwards, K.L., Gnatenko, D.V., Wu, L., Turesky, R.J., Wu, X.R., Pu, Y.S. and Grollman, A.P. (2012) Aristolochic Acid-Associated Urothelial Cancer in Taiwan. Proceedings of the National Academy of Sciences of the United States of America, 109, 8241-8246.
https://doi.org/10.1073/pnas.1119920109

[15]   Li, T.S.C. (2002) Chinese and Related North American Herbs Phytopharmacology and Therapeutic Values. CRC Press. Printed in New York Washington DC, 133, 273.

[16]   Dong, T.T., Zhao, K.J., Gao, Q.T., Ji, Z.N., Zhu, T.T., Li, J., Duan, R., Cheung, A.W. and Tsim, K.W. (2006) Chemical and Biological Assessment of a Chinese Herbal Decoction Containing Radix Astragali and Radix Angelicae Sinensis: Determination of Drug Ratio in Having Optimized Properties. Journal of Agricultural and Food Chemistry, 54, 2767-2774.
https://doi.org/10.1021/jf053163l

[17]   Zhang, W.L., Zheng, K.Y., Zhu, K.Y., Zhan, J.Y., Bi, C.W., Chen, J.P., Du, C.Y., Zhao, K.J., Lau, D.T., Dong, T.T. and Tsim, K.W. (2012) Chemical and Biological Assessment of Angelica Herbal Decoction: Comparison of Different Preparations during Historical Applications. Phytomedicine, 19, 1042-1048.
https://doi.org/10.1016/j.phymed.2012.07.009

[18]   Gong, A.G., Li, N., Lau, K.M, Lee, P.S., Yan, L., Xu, M.L., Lam, C.T., Kong, A.Y., Lin, H.Q., Dong, T.T. and Tsim, K.W. (2015) Calycosin Orchestrates the Functions of Danggui Buxue Tang, a Chinese Herbal Decoction Composing of Astragali Radix and Angelica Sinensis Radix: An Evaluation by Using Calycosin-Knock out Herbal Extract. Journal of Ethnopharmacology, 168, 150-157.
https://doi.org/10.1016/j.jep.2015.03.033

[19]   Du, C.Y.Q. , Choi, R.C.Y., Zheng, K.Y.Z., Dong, T.T.X., Lau, D.T.W. and Tsim, K.W.K. (2013) Yu Ping Feng San, an Ancient Chinese Herbal Decoction Containing Astragali Radix, Atractylodis Macrocephalae Rhizoma & Saposhnikoviae Radix, Regulates the Release of Cytokines in Murine Macrophages. PLoS ONE, 8, e78622.
https://doi.org/10.1371/journal.pone.0078622

[20]   Du, C.Y., Zheng, K.Y.Z., Bi, C.W.C., Dong, T.T.X., Lin, H. and Tsim, K.W.K. (2015) Yu Ping Feng San, an Ancient Chinese Herbal Decoction, Induces Gene Expression of Anti-Viral Proteins and Inhibits Neuraminidase Activity. Phytotherapy Research, 29, 656-661.
https://doi.org/10.1002/ptr.5290

[21]   Lou, J.S., Yan, L., Bi, C.W.C., Chan, G.K.L., Wu, Q.Y., Liu, Y.L., Huang, Y., Yao, P., Du, C. Y.Q., Dong T.T.X. and Tsim, K.W. (2016) Yu Ping Feng San Reverses Cisplatin-Induced Multi-Drug Resistance in Lung Cancer Cells via Regulating Drug Transporters and p62/ TRAF6 Signalling. Scientific Reports, 6, Article Number: 31926.
https://doi.org/10.1038/srep31926

[22]   Zheng, K.Y., Choi, R.C., Xie, H.Q., Cheung, A.W., Guo, A.J., Leung, K.W., Chen, V.P., Bi, C.W., Zhu, K.Y., Chan, G.K., Fu, Q., Lau, D.T., Dong, T.T., Zhao, K.J. and Tsim, K.W. (2010) The Expression of Erythropoietin Triggered by Danggui Buxue Tang, a Chinese Herbal Decoction Prepared from Radix Astragali and Radix Angelicae Sinensis, Is Mediated by the Hypoxia-Inducible Factor in Cultured HEK293T. Journal of Ethnopharmacology, 132, 259-267.
https://doi.org/10.1016/j.jep.2010.08.029

[23]   Zheng, K.Y., Choi, R.C., Cheung, A.W., Guo, A.J., Bi, C.W., Zhu, K.Y., Fu, Q., Du, Y., Zhang, W.L., Zhan, J.Y., Duan, R., Lau, D.T., Dong, T.T. and Tsim, K.W. (2011) Flavonoids from Radix Astragali Induce the Expression of Erythropoietin in Cultured Cells: A Signaling Mediated via the Accumulation of Hypoxia-Inducible Factor-1α. Journal of Agricultural and Food Chemistry, 59, 1697-1704.
https://doi.org/10.1021/jf104018u

[24]   Bedogni, B., Welford, S.M., Cassarino, D.S., Nickoloff, B.J., Giaccia, A.J. and Powell, M.B. (2005) The Hypoxic Microenvironment of the Skin Contributes to Akt-Mediated Melanocyte Transformation. Cancer Cell, 8, 443-454.
https://doi.org/10.1016/j.ccr.2005.11.005

[25]   Buscà, R., Berra, E., Gaggioli, C., Khaled, M., Bille, K., Marchetti, B., Thyss, R., Fitsialos, G., Larribère, L., Bertolotto, C., Virolle, T., Barbry, P., Pouysségur, J., Gilles, P. and Robert, B. (2005) Hypoxia-Inducible Factor 1α Is a New Target of Microphthalmia-Associated Transcription Factor (MITF) in Melanoma Cells. The Journal of Cell Biology, 170, 49-59.
https://doi.org/10.1083/jcb.200501067

 
 
Top