Back
 AM  Vol.7 No.18 , December 2016
A Semi-Lagrangian Type Solver for Two-Dimensional Quasi-Geostrophic Model on a Sphere
Abstract: In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.
Cite this paper: Zhu, Q. and Yang, Y. (2016) A Semi-Lagrangian Type Solver for Two-Dimensional Quasi-Geostrophic Model on a Sphere. Applied Mathematics, 7, 2296-2306. doi: 10.4236/am.2016.718181.
References

[1]   Verkley, W.T.M. (2009) A Balanced Approximation of the One-Layer Shallow-Water Equations on a Sphere. Journal of the Atmospheric Sciences, 66, 1735-1748.
https://doi.org/10.1175/2008JAS2837.1

[2]   Pedlosky, J. (1987) Geophysical Fluid Dynamics. Springer-Verlag.
https://doi.org/10.1007/978-1-4612-4650-3

[3]   Wu, J. (2005) Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces. SIAM Journal on Mathematical Analysis, 36, 1014-1030.
https://doi.org/10.1137/S0036141003435576

[4]   Mu, M. and Zhang, Z. (2006) Conditional Nonlinear Optimal Perturbations of a Two-Dimensional Quasigeostrophic Model. Journal of the Atmospheric Sciences, 63, 1587-1604.
https://doi.org/10.1175/JAS3703.1

[5]   Wang, Q., Zhang, Z. and Li, Z. (2013) A Fourier Finite Volume Element Method for Solving Two-Dimensional Quasi-Geostrophic Equations on a Sphere. Applied Numerical Mathematics, 71, 1-13.
https://doi.org/10.1016/j.apnum.2013.03.007

[6]   Zhang, Z. and Lu, F. (2012) Quadratic Finite Volume Element Method for the Improved Boussinesq Equation. Journal of Mathematical Physics, 53, Article ID: 013505.
https://doi.org/10.1063/1.3672197

[7]   Wang, Q., Zhang, Z., Zhang, X. and Zhu, Q. (2014) Energy-Preserving Finite Volume Element Method for the Improved Boussinesq Equation. Journal of Computational Physics, 270, 58-69.
https://doi.org/10.1016/j.jcp.2014.03.053

[8]   Kurihara, Y. (1965) Numerical Integration of the Primitive Equations on a Spherical Grid. Monthly Weather Review, 93, 399-415.
https://doi.org/10.1175/1520-0493(1965)093<0399:NIOTPE>2.3.CO;2

[9]   Rao, M. and Umscheidu Jr., L. (1969) Tests of the Effect of Grid Resolution in a Global Prediction Model. Monthly Weather Review, 97, 659-664.
https://doi.org/10.1175/1520-0493(1969)097<0659:TOTEOG>2.3.CO;2

[10]   Shuman, F. (1970) On Certain Truncation Errors Associated with Spherical Coordinates. Journal of Applied Meteorology, 9, 564-570.
https://doi.org/10.1175/1520-0450(1970)009<0564:OCTEAW>2.0.CO;2

[11]   Umscheid, L. and Bannon, P. (1977) A Comparison of Three Global Grids Used in Numerical Prediction Models. Monthly Weather Review, 105, 618-635.
https://doi.org/10.1175/1520-0493(1977)105<0618:ACOTGG>2.0.CO;2

[12]   Robert, A., Henderson, J. and Turnbull, C. (1972) An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere. Monthly Weather Review, 100, 329-335.
https://doi.org/10.1175/1520-0493(1972)100<0329:AITISF>2.3.CO;2

[13]   Robert, A. (1981) A Stable Numerical Integration Scheme for the Primitive Meteorological Equations. Atmosphere-Ocean, 19, 35-46.
https://doi.org/10.1080/07055900.1981.9649098

[14]   Robert, A. (1982) A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations. Journal of the Meteorological Society of Japan, 60, 319-325.

[15]   Robert, A., Yee, T. and Ritchie, H. (1985) A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for Multilevel Atmospheric Models. Monthly Weather Review, 113, 388-394.
https://doi.org/10.1175/1520-0493(1985)113<0388:ASLASI>2.0.CO;2

[16]   McDonald, A. (1986) A Semi-Lagrangian and Semi-Implicit Two Time-Level Integration Scheme. Monthly Weather Review, 114, 824-830.
https://doi.org/10.1175/1520-0493(1986)114<0824:ASLASI>2.0.CO;2

[17]   McDonald, A. (1987) Accuracy of Multiply-Upstream, Semi-Lagrangian Advective Schemes II. Monthly Weather Review, 115, 1446-1450.
https://doi.org/10.1175/1520-0493(1987)115<1446:AOMUSL>2.0.CO;2

[18]   Durran, D. (2010) Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Springer, New York.
https://doi.org/10.1007/978-1-4419-6412-0

[19]   Sun, W., Yeh, K. and Sun, R. (1996) A Simple Semi-Lagrangian Scheme for Advection Equations. Quarterly Journal of the Royal Meteorological Society, 122, 1211-1226.
https://doi.org/10.1002/qj.49712253310

[20]   Pep, M. and Francesco, V. (2013) A Semi-Lagrangian AMR Scheme for 2D Transport Problems in Conservation Form. Journal of Computational Physics, 237, 151-176.
https://doi.org/10.1016/j.jcp.2012.11.039

[21]   Ullrich, P., Lauritzen, P. and Jablonowski, C. (2014) A High-Order Fully Explicit Flux-Form Semi-Lagrangian Shallow-Water Model. International Journal for Numerical Methods in Fluids, 75, 103-133.
https://doi.org/10.1002/fld.3887

[22]   Amato, U. and Carfora, M. (2000) Semi-Lagrangian Treatment of Advection on the Sphere with Accurate Spatial and Temporal Approximations. Mathematical and Computer Modelling, 32, 981-995.
https://doi.org/10.1016/S0895-7177(00)00184-9

 
 
Top