Back
 JBM  Vol.4 No.12 , December 2016
Comparison of Three Experimental Models for Rat Osteoarthritis Induction
Abstract: Background: Osteoarthritis is a slowly progressive and debilitating disease with high prevalence in adult population. Knee is one of the joints most affected by this disorder. There are several models for animals’ osteoarthritis induction, however it is not identified any paper that compares these techniques. The present study was aimed to define the most appropriate model for rats osteoarthritis induction. Material and Methods: 40 Wistar rats were distributed into 4 groups of 10 animals each: normality group (NG); meniscectomy group (MG); quinolone group (QG) and iodoacetate group (IG). Radiographic images of the rat’s knees were analyzed as well as the amount of chondrocytes in the epiphyseal and articular cartilage. Results: In the radiographic analysis, there was a low correlation between the raters. Regarding the amount of chondrocytes in the epiphyseal cartilage, it was noticed that the IG and QG groups had fewer chondrocytes than NG, in contrast to MG that reported similar results to normality (p > 0.05). There was no significant difference between IG and QG groups (p > 0.05). Regarding the amount of chondrocytes in articular cartilage, it was noticed that the IG group showed fewer chondrocytes than NG (p < 0.01), in contrast to the QG and MG groups that showed similar results to normality (p > 0.05). There was no significant difference between QG and MG groups (p > 0.05). Conclusion: Intraarticular injection of iodoacetate in rats is the model with greatest effect on reduction of chondrocytes amount.
Cite this paper: Rodrigues-Neto, H. , Andrade-Junior, E. , Feitosa-Junior, D. , Valente, A. , Xavier, T. , Alho, B. , Teixeira, R. , Moriya, F. and de Barros, R. (2016) Comparison of Three Experimental Models for Rat Osteoarthritis Induction. Journal of Biosciences and Medicines, 4, 62-69. doi: 10.4236/jbm.2016.412010.
References

[1]   Litwic, A., Edwards, M.H., Dennison, E.M. and Cooper, C. (2013) Epidemiology and Burden of Osteoarthritis. British Medical Bulletin, 105, 185-199.
https://doi.org/10.1093/bmb/lds038

[2]   Neogi, T. and Zhang, Y. (2013) Epidemiology of Osteoarthritis. Rheumatic Diseases Clinics of North America, 39, 1-19.
https://doi.org/10.1016/j.rdc.2012.10.004

[3]   Plotnikoff, R., Karunamuni, N., Lytvyak, E., Penfold, C., Schopflocher, D., Imayama, I., Johnson, S.T. and Raine, K. (2015) Osteoarthritis Prevalence and Modifiable Factors: A Population Study. BMC Public Health, 15, 1195.
https://doi.org/10.1186/s12889-015-2529-0

[4]   Cunha-Miranda, L., Faustino, A., Alves, C., Vicente, V. and Barbosa, S. (2015) Assessing the Magnitude of Osteoarthritis Disadvantage on People’s Lives: The MOVES Study. Revista Brasileira de Reumatologia, 55, 22-30.
https://doi.org/10.1016/j.rbr.2014.07.009

[5]   Michael, J.W., Schlüter-Brust, K.U. and Eysel, P. (2010) The Epidemiology, Etiology, Diagnosis, and Treatment of Osteoarthritis of the Knee. Deutsches Ärzteblatt international, 107, 152-162.
https://doi.org/10.3238/arztebl.2010.0152

[6]   Samson, D.J., Grant, M.D., Ratko, T.A., Bonnell, C.J., Ziegler, K.M. and Aronson, N. (2007) Treatment of Primary and Secondary Osteoarthritis of the Knee. Evidence Reports/Technology Assessments, 157, 1-157.

[7]   Roddy, E., Thomas, M.J., Marshall, M., Rathod, T., Myers, H., Menz, H.B., Thomas, E. and Peat, G. (2015) The Population Prevalence of Symptomatic Radiographic Foot Osteoarthritis in Community-Dwelling Older Adults: Cross-Sectional Findings from the Clinical Assessment Study of the Foot. Annals of the Rheumatic Diseases, 74, 156-163.
https://doi.org/10.1136/annrheumdis-2013-203804

[8]   Rezende, M.U., Campos, G.C. and Pailo, A. (2013) Current Concepts in Osteoarthritis. Acta Ortopedica Brasileira, 21, 120-122.
https://doi.org/10.1590/S1413-78522013000200010

[9]   Goldring, M.B. (2000) The Role of the Chondrocyte in Osteoarthritis. Arthritis & Rheumatology, 43, 1916-1926.
https://doi.org/10.1002/1529-0131(200009)43:9<1916::AID-ANR2>3.0.CO;2-I

[10]   Kim, H.A., Lee, Y.J., Seong, S.C., Choe, K.W. and Song, Y.W. (2000) Apoptotic Chondrocyte Death in Human Osteoarthritis. The Journal of Rheumatology, 27, 455-462.

[11]   McAlindon, T.E., Bannuru, R.R., Sullivan, M.C., Arden, N.K., Berenbaum, F., Bierma-Zeinstra, S.M., Hawker, G.A., Henrotin, Y., Hunter, D.J., Kawaguchi, H., Kwoh, K., Lohmander, S., Rannou, F., Roos, E.M. and Underwood, M. (2014) OARSI Guidelines for the Non-Surgical Management of Knee Osteoarthritis. Osteoarthritis Cartilage, 22, 363-388.
https://doi.org/10.1016/j.joca.2014.01.003

[12]   Salvato, K.F., Santos, J.P., Pires-Oliveira, D.A., Costa, V.S., Molari, M., Fernandes, M.T., Poli-Frederico, R.C. and Fernandes, K.B. (2015) Analysis of the Influence of Pharmacotherapy on the Quality of Life of Seniors with Osteoarthritis. Revista Brasileira de Reumatologia, 55, 83-88.
https://doi.org/10.1016/j.rbr.2014.08.006

[13]   Gibson, M., Li, H., Coburn, J., Moroni, L., Nahas, Z., Bingham 3rd, C., Yarema, K. and Elisseeff, J. (2014) Intra-Articular Delivery of Glucosamine for Treatment of Experimental Osteoarthritis Created by a Medial Meniscectomy in a Rat Model. Journal of Orthopaedic Research, 32, 302-309.
https://doi.org/10.1002/jor.22445

[14]   Rezende, M.U., Hernandez, A.J., Oliveira, C.R. and Bolliger Neto, R. (2015) Experimental Osteoarthritis Model by Means of Medial Meniscectomy in Rats and Effects of Diacerein Administration and Hyaluronic Acid Injection. Sao Paulo Medical Journal, 133, 4-12.
https://doi.org/10.1590/1516-3180.2013.6730001

[15]   Wang, L., Wu, Y., Tan, Y., Fei, X., Deng, Y., Cao, H., Chen, B., Wang, H., Magdalou, J. and Chen, L. (2014) Cytotoxic Effects of the Quinolone Levofloxacin on Rabbit Meniscus Cells. Journal of Applied Toxicology, 34, 870-877.
https://doi.org/10.1002/jat.2903

[16]   Goto, K., Yabe, K., Suzuki, T., Takasuna, K., Jindo, T. and Manabe, S. (2008) Gene Expression Profiles in the Articular Cartilage of Juvenile Rats Receiving the Quinolone Antibacterial Agent Ofloxacin. Toxicology, 249, 204-213.
https://doi.org/10.1016/j.tox.2008.05.005

[17]   Guzman, R.E., Evans, M.G., Bove, S., Morenko, B. and Kilgore, K. (2003) Mono-Iodoacetate-Induced Histologic Changes in Subchondral Bone and Articular Cartilage of Rat Femorotibial Joints: An Animal Model of Osteoarthritis. Toxicologic Pathology, 31, 619-624.
https://doi.org/10.1080/01926230390241800

[18]   van Buul, G.M., Siebelt, M., Leijs, M.J., Bos, P.K., Waarsing, J.H., Kops, N., Weinans, H., Verhaar, J.A., Bernsen, M.R. and van Osch, G.J. (2014) Mesenchymal Stem Cells Reduce Pain but Not Degenerative Changes in a Mono-Iodoacetate Rat Model of Osteoarthritis. Journal of Orthopaedic Research, 32, 1167-1174.
https://doi.org/10.1002/jor.22650

[19]   Barreto, R.B., Sadigursky, D., de Rezende, M.U. and Hernandez, A.J. (2015) Effect of Hyaluronic Acid on Chondrocyte Apoptosis. Acta Ortopedica Brasileira, 23, 90-93.
https://doi.org/10.1590/1413-785220152302144341

[20]   Lampropoulou-Adamidou, K., Lelovas, P., Karadimas, E.V., Liakou, C., Triantafillopoulos, I.K., Dontas, I. and Papaioannou, N.A. (2014) Useful Animal Models for the Research of Osteoarthritis. European Journal of Orthopaedic Surgery and Traumatology, 24, 263-271.
https://doi.org/10.1007/s00590-013-1205-2

[21]   Kuyinu, E.L., Narayanan, G., Nair, L.S. and Laurencin, C.T. (2016) Animal Models of Osteoarthritis: Classification, Update, and Measurement of Outcomes. Journal of Orthopaedic Surgery and Research, 11, 19.
https://doi.org/10.1186/s13018-016-0346-5

[22]   Goto, K., Imaoka, M., Goto, M., Kikuchi, I., Suzuki, T., Jindo, T. and Takasaki, W. (2013) Effect of Body-Weight Loading onto the Articular Cartilage on the Occurrence of Quinolone-Induced Chondrotoxicity in Juvenile Rats. Toxicology Letters, 16, 124-129.
https://doi.org/10.1016/j.toxlet.2012.11.017

 
 
Top