[1] Yang, X.Z., Tang, Z.M., Yu, S.F., et al. (2010) About the Calculation of Double Wire Welding Temperature Field of Improvement Algorithm Program Design. Journal of Welding, 53-56.
[2] Yang, X.Z., Yu, S.F., Yao, R.G., et al. (2010) Double Moving Heat Source of Heat Flow Value of Efficiency Calculation and Load. Journal of the Hua Zhong University of Science and Technology, 101-104.
[3] Mo, C.L., Qian, B.N., Guo, X.M., et al. (2001) The Research Progress of Welding Heat Source Computing Model. Journal of Welding, 6, 94-97.
[4] Zhao, P.C., Wu, C.S. and Zhang, Y.M. (2004) Numerical Simulation of the Dynamic Characteristic of Weld Pool Geometry with Step Changes of Welding Parameters. Modeling and Simulation in Materials Science and Engineering, 765-780.
[5] Wu, C.S., Chen, J. and Zhang, Y.M. (2007) Numerical Analysis of Both Front- and Back-Side Deformation of Fully-Penetrated GTAW Weld Pool Surfaces. Computational Ma-terials Science, 4, 635-642.
[6] Turna, M., Taraba, B., Ambroz, P., et al. (2011) Contribution to Numerical Simulation of Laser Welding. Physics Procedia, 12, 638-645.
[7] Ranjbarnodeh, E., Kokabi A.H. and Fischer, A. (2011) Effect of Welding Parameters on Residual Stresses in Dissimilar Joint of Stainless Steel to Carbon Steel. Journal of Materials Science, 46, 3225-3232.
[8] Eagar, B.W. and Tsai, N.S. (2012) Temperature Fields Produced by Traveling Distributed Heat Sources. Welding Research Supplement.