CN  Vol.8 No.4 , November 2016
Network Coding Cooperation Performance Analysis in Wireless Network over a Lossy Channel, M Users and a Destination Scenario
Abstract: Network coding (NC), introduced at the turn of the century, enables nodes in a network to combine data algebraically before either sending or forwarding them. Random network coding has gained popularity over the years by combining the received packet randomly before forwarding them, resulting in a complex Jordan Gaussian Elimination (JGE) decoding process. The effectiveness of random NC is through cooperation among nodes. In this paper, we propose a simple, low-complexity cooperative protocol that exploits NC in a deterministic manner resulting in improved diversity, data rate, and less complex JGE decoding process. The proposed system is applied over a lossy wireless network. The scenario under investigation is as follows: M users must send their information to a common destination D and to exchange the information between each others, over erasure channels; typically the channels between the users and the destination are worse than the channels between users. It is possible to significantly reduce the traffic among users and destination, achieving significant bandwidth savings, by combining packets from different users in simple, deterministic ways without resorting to extensive header information before being forwarded to the destination and the M users. The key problem we try to address is how to efficiently combine the packets at each user while exploiting user cooperation and the probability of successfully recovering information from all users at D with k < 2M unique linear equations, accounting for the fact that the remaining packets will be lost in the network and there are two transmission stages. Simulation results show the behaviour for two and three transmission stages. Our results show that applying NC protocols in two or three stages decreases the traffic significantly, beside the fact that the proposed protocols enable the system to retrieve the lost packets rather than asking for ARQ, resulting in improved data flow, and less power consumption. In fact, in some protocols the ARQ dropped from the rate 10ˉ1 to 10ˉ4, because of the proposed combining algorithm that enables the nodes to generate additional unique linear equations to broadcast rather than repeating the same ones via ARQ. Moreover, the number of the transmitted packets in each cooperative stage dropped from M (M - 1) to just M packets, resulting to 2 M packets instead 2 (M2 - 1) when three stages of transmission system are used instead of one stage (two cooperative stages).
Cite this paper: El-Hihi, M. , Attar, H. , A. Solyman, A. and Stankovic, L. (2016) Network Coding Cooperation Performance Analysis in Wireless Network over a Lossy Channel, M Users and a Destination Scenario. Communications and Network, 8, 257-280. doi: 10.4236/cn.2016.84023.

[1]   Cover, T.M and Gamal, A.E. (1979) Capacity Theorems for the Relay Channel. IEEE Transactions on Information Theory, 25, 572-584.

[2]   Laneman, J.N. and Wornell, G.W. (2000) Energy-Efficient Antenna Sharing and Relaying for Wireless Networks. IEEE Wireless Networking and Communications Conference, Chicago, 23-28 September 2000.

[3]   Laneman, J.N., Tse, D.N.C. and Wornell, G.W. (2004) Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Transactions on Information Theory, 50, 3062-3080.

[4]   Attar, H., Stankovic, L. and Stankovic, V. (2012) Cooperative Network-Coding System for Wireless Sensor Networks. IET Communications, 6, 344-352.

[5]   Stefanov, A. and Erkip, E. (2004) Cooperative Coding for Wireless Networks. IEEE Transactions on Communications, 52, 1470-1476.

[6]   Hunter, T.E. and Nosratinia, A. (2006) Diversity through Coded Cooperation. IEEE Transactions on Wireless Communications, 5, 283-289.

[7]   Stankovic, V., Xiong, Z. and Host-Madsen, A. (2006) Cooperative Diversity for Wireless Ad Hoc Networks: Capacity Bounds and Code Designs. IEEE Signal Processing Magazine, 23, 37-49.

[8]   Liew, S.C., Zhang, S. and Lu, L. (2013) Physical-Layer Network Coding: Tutorial, Survey, and Beyond. Physical Communication, 6, 4-42.

[9]   Attar, H., Stankovic, L. and Stankovic, V. (2009) Physical-Layer NC based on PUM Turbo Codes. IEEE Mosharaka International Conference on Communications, Signals and Coding, Amman, February 2009.

[10]   Attar, H., Vukobratovic, D., Stankovic, L. and Stankovic, V. (2011) Performance Analysis of Node Cooperation with NC in Wireless Sensor Networks. 4th IEEE International Conference on New Technologies, Mobility and Security, Paris, 7-10 February 2011.

[11]   Azarian, K., El Gamal, H. and Schniter, P. (2005) On the Achievable Diversity-Multiplexing Tradeoff in Half-Duplex Cooperative Channel. IEEE Transactions on Information Theory, 51, 4152-4172.

[12]   Xiao, L., Fuja, T.E., Kliewer, J. and Costello Jr., D.J. (2007) A Network Coding Approach to Cooperative Diversity. IEEE Transactions on Information Theory, 53, 3714-3723.

[13]   Yu, M., Li, J. and Blum, R.S. (2007) User Cooperation through Network Coding. IEEE International Conference in Communications, Glasgow, 24-28 June 2007.

[14]   Li, S.-Y.R., Yeung, R.W. and Cai, N. (2003) Linear Network Coding. IEEE Transactions on Information Theory, 49, 371-381.

[15]   Koetter, R. and Medard, M. (2003) An Algebraic Approach to Network Coding. IEEE/ACM Transactions on Networking, 11, 782-795.

[16]   Li, P., Guo, S., Yu, S. and Vasilakos, A.V. (2014) Reliable Multicast with Pipelined Network Coding Using Opportunistic Feeding and Routing. IEEE Transactions on Parallel and Distributed Systems, 25, 3264-3273.

[17]   Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M. and Crowcroft, J. (2006) XORs in the Air: Practical Wireless Network Coding. IEEE/ACM Transactions on Networking, 16, 497-510.