Back
 EPE  Vol.8 No.11 , November 2016
MPPT Design Using PSO Technique for Photovoltaic System Control Comparing to Fuzzy Logic and P&O Controllers
Abstract: The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic system, regardless of irradiation and temperature variations. In this research, we present a novel technique to improve the control’s performances optimization of the system consisting of a photovoltaic panel, a buck converter and a load. Simulations of different parts of the system are developed under Matlab/Simulink, thus allowing a comparison between the performances of the three studied controllers: “Fuzzy TS”, “P&O” and “PSO”. The three algorithms of MPPT associated with these techniques are tested in different meteorological conditions. The obtained results, in different operating conditions, reveal a clear improvement of controlling performances of MPPT of a photovoltaic system when the PSO tracking technique is used.
Cite this paper: Belghith, O. , Sbita, L. and Bettaher, F. (2016) MPPT Design Using PSO Technique for Photovoltaic System Control Comparing to Fuzzy Logic and P&O Controllers. Energy and Power Engineering, 8, 349-366. doi: 10.4236/epe.2016.811031.
References

[1]   Rekioua, D. and Matagne, E. (2012) Optimisation of Photovoltaic Power Systems, Modelization, Simulation and Control. Springer.
http://dx.doi.org/10.1007/978-1-4471-2403-0

[2]   Enrique, J.M., Duran, E., Sidrach, M. and Andujar, J.M. (2005) A New Approach to Obtain I-V and P-V Curves of PV Panels by Using DC-DC Converters. Conference Record of the 31st IEEE Photovoltaic Specialists Conference, Lake buena Vista, FL, 37 January 2005, 1769-1772.

[3]   Rawoof, R., Balasubramanian, R. and Muthukrishnan, N.M. (2015) Modeling and Simulation of 100 kWp Grid-Connected Photovoltaic Power System. Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG), Kurnool, 11-12 December 2015, 15-20.

[4]   Pradeep Kumar Yadav, A., Thirumaliah, S. and Haritha, G. (2012) Comparison of MPPT Algorithms for DC-DC Converters Based PV Systems. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 1, 18-23.

[5]   Al-Diab, A. and Sourkounis, C. (2010) Variable Step Size P&O MPPT Algorithm for PV Systems. 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, 20-22 May 2010, INSPEC Accession Number: 11431599.
http://dx.doi.org/10.1109/OPTIM.2010.5510441

[6]   Zainudin, H.N. and Mekhilef, S. (2010) Comparison Study of Maximum Power Point Tracker Techniques for PV Systems. Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10), Cairo University, Egypt, 19-21 December 2010, 750-755.

[7]   Farhat, M. and Sbita, L. (2011) Advanced Fuzzy MPPT Control Algorithm for Photovoltaic Systems. Science Academy Transactions on Renewable Energy Systems Engineering and Technology, 1, 29-36.

[8]   Ajaamoum, M., Kourchi, M., Alaoui, R. and Bouhouch, L. (2013) Fuzzy Controller to Extract the Maximum Power of a Photovoltaic System. IEEE International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate, 7-9 March 2013, 141-146.
http://dx.doi.org/10.1109/IRSEC.2013.6529657

[9]   Oubah, R., Benzaouia, A. and El Hajjaji, A. (2015) Simulation and Control of Takagi-Sugeno Uncertain Model of Buck Converter by Linear Programming. International Conference on Microelectronics (ICM), Casablanca, 20-23 December 2015, INSPEC Accession Number: 15886305.
http://dx.doi.org/10.1109/icm.2015.7438040

[10]   Abid, H., Tadeo, F. and Souissi, M. (2012) Maximum Power Point Tracking for Photovoltaic Panel based on T-S Fuzzy Systems. International Journal of Computer Applications, 44, 50-58.

[11]   Mule, S., Hardas, R. and Kulkarni, N.R. (2016) P&O, IncCon and Fuzzy Logic Implemented MPPT Scheme for PV Systems Using PIC18F452. International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, 23-25 March 2016, INSPEC Accession Number: 16304237.
http://dx.doi.org/10.1109/WiSPNET.2016.7566351

[12]   Lingeswaran, K. (2014) Microcontroller-Based MPPT Control for Standalone PV System with Sepic Converter. Middle-East Journal of Scientific Research, 8, 945-950.

[13]   Harrabi, N., Souissi, M., Aitouche, A. and Chaabane, M. (2016) MPPT Algorithm for Wind Energy Generation System Using T-S Fuzzy Modeling. 5th International Conference on Systems and Control (ICSC), Marrakech, 25-27 May 2016, INSPEC Accession Number: 16140156.

[14]   Mayatake, M., Veerachary, M., Toriumi, F., et al. (2011) Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A Particle Swarm Optimization Approach. IEEE Transactions on Aerospace and Electronic Systems, 47, 367-380.
http://dx.doi.org/10.1109/TAES.2011.5705681

[15]   Ishaque, K., Salam, Z., Amjad, M., et al. (2012) An Improved Particle Swarm Optimization (PSO)-Based MPPT for PV with Reduced Steady-State Oscillation. IEEE Transactions on Power Electronics, 27, 3627-3638.
http://dx.doi.org/10.1109/TPEL.2012.2185713

[16]   Piegari, L. and Rizzo, R. (2010) Adaptive Perturb and Observe Algorithm for Photovoltaic Maximum Power Point Tracking. Renew Power Generation IET, 4, 317-328.
http://dx.doi.org/10.1049/iet-rpg.2009.0006

[17]   Takagi, T. and Sugeno, M. (1985) Fuzzy Identification of Systems and Its Application to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15, 116-132.
http://dx.doi.org/10.1109/TSMC.1985.6313399

 
 
Top