Similarity Solutions of Unsteady Mixed Convective Boundary Layer Flow of Viscous Incompressible Fluid along Isothermal Horizontal Plate
Abstract: Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed into ordinary differential equations using the similarity transformation and solved numerically along with shooting technique. The flow field for the fluid velocity, temperature and concentration at the plate surface are significantly influenced by the governing parameters such as unsteadiness parameter, permeability parameter, Prandtl number, Schmidt number and the other driving parameters. The results show that both fluid velocity and temperature decrease but no significant effect on concentration for the increasing values of Prandtl number. It is also exposed that velocity and concentration is higher at lower Schmidt number for low Prandtl fluid. Finally, the dependency of the Skin-friction co-efficient, Nusselt number and Sherwood number, which are of physical interest, are also illustrated in tabular form for the governing parameters.
Cite this paper: Uddin, M. , Ali, M. , Zahed, N. , Uddin, M. (2016) Similarity Solutions of Unsteady Mixed Convective Boundary Layer Flow of Viscous Incompressible Fluid along Isothermal Horizontal Plate. Open Journal of Fluid Dynamics, 6, 279-302. doi: 10.4236/ojfd.2016.64022.
References

[1]   Stewartson, K. (1964) The Theory of Laminar Boundary Layers in Compressible Fluid. Oxford Mathematical Monograph. Journal of Applied Mathematics and Mechanics, 44, 413.

[2]   Crane, L.J. (1970) Flow past a Stretching Plate. Journal of Applied Mathematics and Physics, 21, 645-647 https://doi.org/10.1007/bf01587695

[3]   Gupta, P.S. and Gupta, A.S. (1977) Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing. The Canadian Journal of Chemical Engineering, 55, 744-746.
https://doi.org/10.1002/cjce.5450550619

[4]   Johnson, C.H. and Cheng, P. (1978) Possible Similarity Solution for Free Convection Boundary Layers Adjacent to Flat Plates in Porous Media. International Journal of Heat and Mass Transfer, 21, 709-718. https://doi.org/10.1016/0017-9310(78)90032-7

[5]   Afzal, N. and Hussain, T. (1984) Mixed Convection over a Horizontal Plate. Journal of Heat Transfer, 106, 240-241. https://doi.org/10.1115/1.3246644

[6]   Kumari, M., Slaouti, A., Nakamura, S., Takhar, H.S. and Nath, G. (1986) Unsteady Free Convection Flow over a Continuous Moving Vertical Surface. Acta Mechanica, 116, 75-82.
https://doi.org/10.1007/BF01171421

[7]   Slaouti, A., Takhar, H.S. and Nath, G. (1998) Unsteady Free Convection Flow in the Stagnation Point Region of a Three-Dimensional Body. International Journal of Heat and Mass Transfer, 41, 3397-3408. https://doi.org/10.1016/S0017-9310(98)00080-5

[8]   Lagree, P.-Y. (2001) Removing the Marching Breakdown of the Boundary-Layer Equations for Mixed Convection above a Horizontal Plate. International Journal of Heat and Mass Transfer, 44, 3359-3372. https://doi.org/10.1016/S0017-9310(00)00361-6

[9]   Kim, J., Kang, Y.T. and Choi, C.K. (2004) Analysis of Mixed Convective Instability and Heat Transfer Characteristics of Nanofluids. Physics of Fluids, 16, 2395-2401.
https://doi.org/10.1063/1.1739247

[10]   Chamkha, A.J. and Al-Mudhaf, A. (2005) Unsteady Heat and Mass Transfer from a Rotating Vertical Cone with a Magnetic Field and Heat Generation or Absorption Effects. International Journal of Thermal Science, 44, 267-276. https://doi.org/10.1016/j.ijthermalsci.2004.06.005

[11]   Aydin, O. and Kaya, A. (2005) Laminar Boundary Layer Flow over a Horizontal Permeable Flat Plate. Applied Mathematics and Computation, 161, 229-240.
https://doi.org/10.1016/j.amc.2003.12.021

[12]   Ali, M.E. and Magyari, E. (2007) Unsteady Fluid and Heat Flow Induced by a Submerged Stretching Surface while Its Steady Motion Is Slowed Down Gradually. International Journal of Heat and Mass Transfer, 50, 188-195.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.021

[13]   Ali, M.Y. and Touhid, H.M.M. (2012) Similarity Solutions for Unsteady Laminar Natural Convection Boundary Layer Flow around a Vertical Heated Curvilinear Surface. International Journal of Applied Mathematics and Statistics, 30, 1-15.

[14]   Vajravelu, K., Prasad, K.V. and Ng, C.-O. (2013) Unsteady Convective Boundary Layer Flow of a Viscous Fluid at a Vertical Surface with Variable Fluid Properties. Nonlinear Analysis: Real World Applications, 14, 455-464. https://doi.org/10.1016/j.nonrwa.2012.07.008

[15]   Singh, G. and Sharma, P.R. (2014) Heat and Mass Transfer in the Boundary Layer Flow along a Vertical Isothermal Reactive Plate near Stagnation Point. Journal of Applied Fluid Mechanics, 7, 25-33.

[16]   Ali, M.Y., Uddin, M.N., Uddin, M.J. and Zahed, N.M.R. (2015) Similarity Solutions of Unsteady Convective Boundary Layer Flow along Isothermal Vertical Plate with Porous Medium. Open Journal of Fluid Dynamics, 5, 391-406. https://doi.org/10.4236/ojfd.2015.54038

[17]   Ali1, M.Y., Zahed, N.M.R., Uddin, M.N. and Uddin, M.J. (2016) Similarity Solutions for an Internal Heat Generation, Thermal Radiation and Free Convection Unsteady Boundary Layer Flow over a Vertical Plate. Journal of Scientific Research, 8, 341-353 https://doi.org/10.3329/jsr.v8i3.27851

[18]   Ali1, M.Y., Uddin, M.J., Uddin, M.N. and Zahed, N.M.R. (2016) Similarity Solutions for Unsteady Hydromagnetic Free Convection Boundary Layer Flow over Flat Plates with Thermophoresis. Journal of Scientific Research, 8, 287-307. https://doi.org/10.3329/jsr.v8i3.27347

Top