Back
 CN  Vol.8 No.4 , November 2016
Physical Layer Deterministic Network Coding Using PUM Turbo Codes over AWGN Channel, N Nodes through a Base Station Scenario
Abstract:
Network Coding (NC) is a recent technique which is used to improve the transmission data rate and the power efficiency. These goals are obtained by combining data together before transmitting them, resulting to less transmitted data that carry the same amount of information. NC research work over the physical layer and the upper layers are popular and needed to be more investigated. In this paper, we propose a practical system of large-number of connected multi-source network coding (LMSNC), at the physical layer that exploits the broadcast nature of the wireless channel, using the practical and bandwidth-efficient schemes decode-and-forward (DF) and then compare it with Amplify and Forward (AF). The theoretical analysis and the simulation results show the effect of the noise when it cumulates in AF system and how DF is solving this severe default. Moreover, we consider the MSNC for Small-number of connected sources (SMSNC) and the two-way communication setup where two users exchange their information over an intermediate network node (ideally called Base Station), as two reference cases to compare with. With SMSNC, the number of necessary downlink transmissions from the intermediate node to the users is reduced, and thus the throughput is increased. Simulation results obtained using high-performance non-binary turbo codes, based on Partial Unit Memory (PUM) codes (4, 2, 1, 4) and (8, 4, 3, 8); confirm that combining PUM Turbo Code (PUMTC) and NC in the proposed MSNC setup gives almost the same BER performance as that for SMSNC at the small number of processing steps mainly when PUMTC (8, 4, 3, 8) is performed, which is required to retrieve the received coded messages. In the scenario of AF, combining packets results to cumulate the noise, which justifies the reason we decided to increase the number of transmitted coded messages in the network, i.e., the BER performance improves when sending extra coded messages. Finally, the possibility for a trade-off among BER, data rate and the number of transmitted coded messages is shown for LMSNC through graphics and simulation results.
Cite this paper: Attar, H. (2016) Physical Layer Deterministic Network Coding Using PUM Turbo Codes over AWGN Channel, N Nodes through a Base Station Scenario. Communications and Network, 8, 241-256. doi: 10.4236/cn.2016.84022.
References

[1]   Ahlswede, R., Cai, N., Li, S.-Y.R. and Yeung, W. (2000) Network Information Flow. IEEE Transactions on Information Theory, 46, 1204-1216.
https://doi.org/10.1109/18.850663

[2]   Wu, Y., Chou, P.A. and Kung, S.-Y. (2005) Information Exchange in Wireless Networks with Network Coding and Physical-Layer Broadcast. Proceedings of CISS, Baltimore, March 2005.

[3]   Fragouli, C., Le Boudec, J.-Y. and Widmer, J. (2006) Network Coding: An Instant Primer. ACM SIGCOMM Computer Communication Review, 36, 63-68.
https://doi.org/10.1145/1111322.1111337

[4]   Sagduyu, Y.E. and Ephremides, A. (2005) Joint Scheduling and Wireless Network Coding. Proceedings of NetCod-2005, Riva del Garda, April 2005.

[5]   Sundararajan, J.K., Shah, D. and Medard, M. (2008) Online Network Coding for Optimal throughput and Delay—The Three-Receiver Case. ISITA-2008 International Symposium on Information Theory and Its Applications, Auckland, December 2008.

[6]   Hausl, C., Schreckenbach, F., Oikonomidis, I. and Bauch, G. (2004) Iterative Network and Channel Decoding on a Tanner Graph. Proc. Annual Allerton Conference on Communication, Control, and Computing, Monticello, October 2004.

[7]   Bao, X. and Li, J. (2006) A Unified Channel-Network Coding Treatment for User Cooperation in Wireless Ad-Hoc Networks. Proceedings of IEEE ISIT-2006, Seattle, 9-14 July 2006.
https://doi.org/10.1109/isit.2006.261833

[8]   Hausl, C. and Hagenauer, J. (2006) Iterative Network and Channel Decoding for the Two-Way Relay Channel. Proceedings of IEEE ICC’06, Istanbul, 11-15 June 2006.
https://doi.org/10.1109/icc.2006.255034

[9]   Popovski, P. and Yomo, H. (2006) The Ant-Packets Can Increase the Achievable throughput of a Wireless Multi-Hop Network. Proceedings of IEEE ICC’06, Istanbul, June 2006.

[10]   Xiao, L., Fuja, T.E., Kliwer, J. and Costello, D.J. (2006) Nested Codes with Multiple Interpretations. Proceedings of CISS’06, Princeton, 22-24 March 2006.
https://doi.org/10.1109/ciss.2006.286586

[11]   Attar, H., Stankovic, L. and Stankovic, V. (2009) Physical Layer Network Coding Based on PUM Turbo Codes. IEEE Mosharaka International Conference on Communications, Signals and Coding, Amman, January 2009.

[12]   Attar, H. and Stankovic, L. and Stankovic, V. (2012) Cooperative Network-Coding System for Wireless Sensor Networks. IET Communications, 6, 344-352.

[13]   Stankovic, V., Stankovic, L., Moinian, A. and Cheng, S. (2007) Wireless Full-Duplex Communications Based on Network Coding. Proceedings of 45th Annual Allerton Conference on Communications, Control and Computing, Monticello, September 2007.

[14]   Katti, S., Maric, I., Katabi, D., Goldsmith, A. and Medard, M. (2007) Joint Relaying and Network Coding in Wireless Networks. Proceedings of ISIT-2007, France, 24-29 June 2007.
https://doi.org/10.1109/isit.2007.4557120

[15]   Fagoonee, L. and Honary, B. (2005) Construction of Partial Unit Memory Encoders for Application in Capacity-Approaching Concatenated Codes. IEE Proceedings in Communications: Special Section on Capacity Approaching Codes, Design and Implementation, 152, 1108-1115.

 
 
Top