MSA  Vol.2 No.9 , September 2011
Printability of HDPE/Natural Fiber Composites with High Content of Cellulosic Industrial Waste
ABSTRACT
In this paper, a continuous polymeric matrix highly filled with fiber of sugarcane bagasse has been obtained and its feasibility as an ink-absorbing material has been evaluated. In order to study the effect of the amount of cellulose fiber on the surface printability, contact angle measurement using different liquids—water-based inks, ethanol and ink for ink-jet printers—and printing tests were performed on composites of high density polyethylene (HDPE) and sugarcane bagasse (SCB). The composites were processed in a Haake internal mixer, using the SCB without any previous chemical treatment or compatibilizer. The differential scanning calorimetry (DSC) and derivative thermogravimetry (TG/ DTG) revealed an increase in the thermal stability and in the degree of crystallinity of the HDPE. The optical microscopy (OM) and scanning electron microscopy (SEM) showed that the cellulosic material was homogeneously embedded within the HDPE matrix. In order to assess the resistance of the composite sample to the pull strength of the printer, tensile tests were applied to the composites and the results were compared to known paper samples. The best result was achieved in the composite with the highest content of SCB, as well as the shortest drying time.

Cite this paper
nullL. Mendes and S. Cestari, "Printability of HDPE/Natural Fiber Composites with High Content of Cellulosic Industrial Waste," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1331-1339. doi: 10.4236/msa.2011.29181.
References
[1]   L. Yu, K. Dean and L. Li, “Polymer Blends and Composites from Renewable Resources,” Progress in Polymer Science, Vol. 31, No. 6, 2006, pp. 576-602. doi:10.1016/j.progpolymsci.2006.03.002

[2]   Z. Liu, S. Z. Erhan, D. E. Akin and F. E. Barton, “‘Green’ Composites from Renewable Resources: Preparation of Epoxidized Soybean Oil and Flax Fiber Composites,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 6, 2006, pp. 2134-2137. doi:10.1021/jf0526745

[3]   M. Breslin, “Demand for Plastic Lumber Remains High,” In: K. I. Redighieri and D. A. Costa, Eds., Mechanical Properties and Water Uptake of Composites of Recycled LDPE and Wood Particles, Revista Universidade Rural, Serie Ciencias Exatas e da Terra, No. 25, 2006, pp. 28-35.

[4]   G. A. Wiedman, “Fibra de coco e resinas de origem vegetal para produ??o de componentes de mobiliário e da constru??o civil,” Ph.D. Dissertation, Universidade de S?o Paulo, S?o Paulo, 2002.

[5]   Y. H. Cui, J. Tao, B. Noruziaan, M. Cheung and S. Lee, “DSC Analysis and Mechanical Properties of Wood-Plas- tic Composites,” Journal of Reinforced Plastics and Composites, Vol. 29, 2010, pp. 278-289. doi:10.1177/0731684408097766

[6]   A. F. Martins, J. C. M. Suarez and E. B. Mano, “Produtos poliolefíNicos Reciclados Com Desempenho Superior Aos Materiais Virgens Correspondentes,” Polímeros: Ciência e Tecnologia, Vol. 9, No. 4, 1999, pp. 27-32.

[7]   S. M. Luz, J. Del Tio, G. J. M. Rocha, A. R. Gon?alves and A. P. Del’Arco Jr., “Cellulose and Cellulignin from Sugarcane Bagasse Reinforced Polypropylene Composites: Effect of Acetylation on Mechanical and Thermal Properties,” Composites Part A, Vol. 39, No. 9, 2008, pp. 1362-1369. doi:10.1016/j.compositesa.2008.04.014

[8]   G. Saini, A. K. Narula, V. Choudhary and R. Bhardwaj, “Effect of Particle Size and Alkali Treatment of Sugarcane Bagasse on Thermal, Mechanical, and Morphological Properties of PVC-Bagasse Composites,” Journal of Reinforced Plastics and Composites, Vo. 29, 2010, pp. 731-740.

[9]   S. M. Luz, A. C. Pires and P. M. C. Ferr?o, “Environmental Benefits of Substituting Talc by Sugarcane Bagasse Fibres as Reinforcement in Polypropylene Composites: Ecodesign and LCA as Strategy for Automotive Components,” Resources, Conservation and Recycling, Vol. 54, No. 12, 2010, pp. 1135-1144.

[10]   S. M. Luz, A. R. Gon?alves and A. P. Del’Arco Jr., “Mechanical Behavior and Microstructural Analysis of Sugarcane Bagasse Fibres Reinforced Polypropylene Composites,” Composites Part A, Vol. 38, No. 6, 2007, pp. 1455-1461.

[11]   B. Singh and M. Gupta, “Performance of Pultruded Jute Fibre Reinforced Phenolic Composites as Building Materials for Door Frame,” Journal of Polymers and the Environment, Vol. 13, No. 2, 2005, pp. 127-137. doi:10.1007/s10924-005-2944-x

[12]   J. G. Gwon, S. Y. Lee, S. J. Chun, G. H. Doh and J. H. Kim, “Effect of Chemical Treatments of Wood Fibers on the Physical Strength of Polypropylene Based Composites,” Korean Journal of Chemical Engineering, Vol. 27, No. 2, 2010, pp. 651-657.

[13]   B. A. Acha, N. E. Marcovich and M. M. Reboredo, “Lignin in Jute Fabric—Polypropylene Composites,” Journal of Applied Polymer Science, Vol. 113, No. 3, 2009, pp. 1480-1487.

[14]   A. A. Apostolov, M. Evstatiev, Z. Denchev, K. Friedrich and S. Fakirov, “Effect of Composition on Transcrystallization of Polypropylene in Drawn PET/PP Blend,” Journal of Materials Science, Vol. 42, No. 4, 2007, pp. 1245-1250. doi:10.1007/s10853-006-1395-7

[15]   B. Na, M. Guo, J. Yang, H. Tan, Q. Zhang and Q. Fu, “Crystal Morphology and Transcrystallization Mechanism of Isotactic Polypropylene Induced by Fibres: Interface Nucleation versus Bulk Nucleation,” Polymer International, Vol. 55, No. 4, 2006, pp. 441-448. doi:10.1002/pi.1996

[16]   D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. da Silva, T. G. da Cruz and C. Saron, “Sugarcane Bagasse Cellulose/HDPE Composites Obtained by Extrusion,” Composites Science and Technology, Vol. 69, No. 2, 2009, pp. 214-219. doi:10.1016/j.compscitech.2008.10.006

 
 
Top