MSA  Vol.2 No.9 , September 2011
Effect of Nano Size TiO2 Particles on Mechanical Properties of AWS E 11018M Type Electrode
ABSTRACT
Addition of nano size particles of TiO2 in the coating of shielded metal arc welding electrode (E 11018M) partially substituting the conventional micro size TiO2 was studied for possible enhanced electrode characteristics. The results show that the nano size particle of TiO2 improved recovery of elements such as Mn, Ni, Mo, Ti etc. as well as increased all-weld-metal tensile and charpy impact properties at –51℃. Furthermore, the charpy impact properties were found to be very sensitive to variations in Ti content of the weld deposit.

Cite this paper
nullT. Pal and U. Maity, "Effect of Nano Size TiO2 Particles on Mechanical Properties of AWS E 11018M Type Electrode," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1285-1292. doi: 10.4236/msa.2011.29173.
References
[1]   L. E. Svensson, “Consumable for Welding High Strength Steels,” Svetsaren, Vol. 54, No. 1-2, 1999, pp. 29-33.

[2]   M. George, J. Still and P. Terry, “Gas Metal Arc Welds for High Toughness Applications-Microstructure and Other Factors,” Metal Construction, Vol. 13, No. 12, 1981, pp. 730-737.

[3]   T. Keeler, “Innershield Welding Part 1-Development and Applications,” Metal Construction, Vol. 13, No. 11, 1981, pp. 667-673.

[4]   D. J. Widgery, L. Karlsson, M. Murugananth and E. Keehan, “Approaches to the Development of High- Strength Weld Metals,” Proceedings of 2nd International Symposium on High Strength Steel, Stikklestad, Verdal, Norway: European Coal and Steel Community (ECSC), B-1049 Brussels, Belgium, 2002.

[5]   W. C. Leslie, “The Physical Metallurgy of Steels,” McGraw-Hill, London, 1981.

[6]   L. E. Svensson, “Control of Microstructure and Properties in Steel Arc Welds,” CRC Press, Inc., 1994.

[7]   G. M. Evans and N. Bailey, “Metallurgy of Basic Weld Metal,” Abington Publishing, 1997. doi:10.1533/9781845698850

[8]   M. Nakanishi, Journal of the Japan Welding Society, Vol. 50, 1981, p. 5.

[9]   J. A. Gianetto, et al., Welding Journal, Vol. 71, 1992, p. 407-S. S. Liu and D. L. Olson, “The Role of Non-metallic Inclusions in Controlling HSLA Weld Microstructures,” Welding Journal, Vol. 65, 1986, p.134-s-149-s.

[10]   S. Liu and D. L. Olson, “The Role of Non-metallic Inclu-sions in Controlling HSLA Weld Microstructures,” Welding Journal, Vol. 65, 1986, p.134-s-149-s.

[11]   I. Watanabe and T. Kojima, Journal of the Japan Welding Society, Vol. 49, 1980, p. 772 N. Mori: IIW Doc. IX – 1158-1180.

[12]   N. Mori, H. Homma, S. Ohkita and M. Wakabayashi, “Mechanisms of Notch Toughness Improvement in Ti-B Bearing Weld Metal,” IIW Doc. IX-1196-81.

[13]   N. Christensen and J. Chipman, “Slag-Metal Interaction in Arc Welding,” Welding Research Council, Bulletin, Vol. 15, January 1953, pp. 1-14.

[14]   U. Mitra and T. W. Eagar, “Slag-Metal Reaction during Submerged Arc Welding of Alloy Steels,” Metallurgical and Materials Transactions A, Vol. 15A, 1984, pp. 217- 227. doi:10.1007/BF02644404

[15]   G. R. Bolton, T. J. Moore and E. S. Tankins, “Slag-Metal Reactions in Submerged Arc Welding,” Welding Journal, Vol. 42, No. 7, 1963, pp. 289-s-297-s.

[16]   M. C. Flemings, “Solidification Processing,” McGraw- Hill, New York, 1974.

[17]   R. H. Forst, D. L. Olson and S. Liu, “Influence of Solidification on Inclusion Formation in Welds,” Proceedings of the 3rd International Conference on Trends in Welding Research, ASM International, Gatlinburg, Tennessee, 1992.

[18]   W. Y. Zhang, “Welding Metallurgy,” Mechanical Engineering Press, Beijing, 2003.

[19]   B. Chen, F. Han, Y.Huang, K. Lu, Y. Liu and L. Li, “Influence of Nanoscale Marble (Calcium Carbonate CaCO3) on Properties of D600 R Surfacing Electrode,” Welding Journal, Vol. 88, March 2009, pp. 99-s-103-s.

[20]   S. A. David and T. Deb Ray, “Current Issues and Problems in Welding Science,” Science, Vol. 257, 1992, pp. 497-502. doi:10.1126/science.257.5069.497

[21]   U. Lindborg and K. Torsell, Transactions on TMS-AIME, Vol. 242, 1968, pp. 94-102.

[22]   J.S. Byun, J.H. Shim and Y. W. Cho, “Influence of Mn on Microstructure Evolution in Ti-Killed C-Mn Steel,” Scripta Materialia, Vol. 48, No. 4, 2003, pp. 449-454. doi:10.1016/S1359-6462(02)00437-2

[23]   S. K. Liu and J. Zhang, “The Influence of the Si and Mn Concentrations on the Kinetics of the Bainite Transformation in Fe-C-Si-Mn Alloys,” Metallurgical and Materials Transactions A, Vol. 21, No. 6, 1990, pp. 1517- 1525.

[24]   K. He and D.V. Edmonds, “Formation of Acicular Ferrite and Influence of Vanadium Alloying,” Materials Science and Technology, Vol. 18, 2002, pp. 289-296. doi:10.1179/026708301225000743

[25]   T. Furuhara, J. Yamaguchi, N. Sugita, N. Miyamoto and T. Maki, “Nucleation of Procutectoid Ferrite on Complex Precipitates in Austenite,” ISIJ International, Vol. 43, No. 10, 2003, pp. 1630-1639. doi:10.2355/isijinternational.43.1630

[26]   W. Steven and A. G. Haynes, “The Temperature of Formation of Martensite and Bainite in Low-Alloy Steels,” Journal of the Iron and Steel Institute, Vol. 183, No. 8, 1956, pp. 349-359

[27]   K. Sampath, “Constraints-Based Modeling Enables Successful Development of a Welding Electrode Specification for Critical Navy Applications,” Welding Journal, August 2005, pp. 131-s-138-s.

[28]   K. J. Irvine and F. B. Pickering, “Low-Carbon Bainitic Steels,” Journal of the Iron and Steel Institute, Vol. 184, No. 12, 1957, pp. 292-309.

[29]   W. C. Leslie, “The Physical Metallurgy of Steels,” McGraw-Hill International Book Company, London, 1981, pp. 201-205.

[30]   R. J. Wrong and M. D. Hayes, “The Metallurgy, Welding and Qualification of Microalloyed (HSLA) Steel Weldments,” AWS, Miami, 1990, pp. 450-489.

[31]   G. M. Evans, “Factors Affecting the Microstructure and Properties of C-Mn All-Weld Metal Deposits,” Welding Research Abroad, Vol. 28, No. 1, 1983, pp. 1-69.

[32]   G. M. Evans, “The Effect of Titanium on the Microstructure and Properties of C-Mn All-Weld Metal Deposits,” OERLIKON-Schweibmitt, Vol. 49, No. 125, 1991, pp. 22- 33.

 
 
Top