Back
 MSA  Vol.7 No.11 , November 2016
Predictive Elastoplastic Damage Constitutive Law: Establishment of Equivalence Relation between Intrinsic and Extrinsic Material Parameters
Abstract: The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intrinsic and extrinsic parameters of a reference material is built and transformed in equivalence relation. Extrinsic parameters concern the shape of their experimental tensile force/elongation curve, however, intrinsic parameters deal with Swift hardening law coupled with an isotropic damage variable. The relationship is carried out from a statistical characterization of a material reference (standard-steel E24). It based on multiple linear regression of a data set obtained according to a full factor design of numerical simulations of mechanical tensile tests. All materials satisfying this equivalence relation belong to the same equivalence class. This is motivated by observing that gathered materials must behave somewhat like the reference material. The material parameters can be immediately identified by only one task by running the found relationship. The current method facilitates the identification procedure and offers a substantial savings in CPU time. However it just needs only one simulation for the identification of similar behavior instead of the few hundred required when using other methods.
Cite this paper: Rezgui, M. , Nasri, M. and Ayadi, M. (2016) Predictive Elastoplastic Damage Constitutive Law: Establishment of Equivalence Relation between Intrinsic and Extrinsic Material Parameters. Materials Sciences and Applications, 7, 730-753. doi: 10.4236/msa.2016.711058.
References

[1]   Topa, A. and Shah, Q.H. (2014) Failure Prediction in Bulk Metal Forming Process. Inter- national Journal of Manufacturing Engineering, 2014, Article ID: 385065.
http://dx.doi.org/10.1155/2014/385065

[2]   Jansson, T. and Nilsson, L. (2006) Minimizing the Risk of Failure in a Sheet Metal Forming Process Optimization Using Space Mapping with One-Step and Incremental Solvers. Structural and Multidisciplinary Optimization, 31, 320-332.
http://dx.doi.org/10.1007/s00158-005-0604-3

[3]   Pijaudier-Cabot, G. and Bazant, Z. (1987) Nonlocal Damage Theory. Journal of Engineering Mechanics, 113, 1512-1533.
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)

[4]   Chaboche, J.L. (1988) Continuum Damage Mechanics: Part I—General Concepts. Journal of Applied Mechanics, 55, 59-64.
http://dx.doi.org/10.1115/1.3173661

[5]   Chaboche, J.L. (1988) Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth. Journal of Applied Mechanics, 55, 65-72.
http://dx.doi.org/10.1115/1.3173662

[6]   Becker, R., Needleman, A., Richmond, O. and Tvergaard, G. (1988) Void Growth and Failure in Notched Bars. Journal of the Mechanics and Physics of Solids, 36, 317-351.
http://dx.doi.org/10.1016/0022-5096(88)90014-2

[7]   Tvergaard, V. (1989) Material Failure by Void Growth to Coalescence. Advances in Applied Mechanics, 27, 83-151.
http://dx.doi.org/10.1016/S0065-2156(08)70195-9

[8]   Germain, P., Nguyen, Q.S. and Suquet, P. (1983) Continuum Thermodynamics. Journal of Applied Mechanics, 50, 1010-1020.
http://dx.doi.org/10.1115/1.3167184

[9]   Lemaitre, J. (1985) A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107, 83-89.
http://dx.doi.org/10.1115/1.3225775

[10]   Bonora, N. (1997) On the Effect of Triaxial State of Stress on Ductility Using Nonlinear CDM Model. International Journal of Fracture, 88, 359-371.
http://dx.doi.org/10.1023/A:1007479522972

[11]   Kachanov, L. (1958) Time of the Rupture Process under Creep Conditions. Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnicheskikh Nauk, 8, 26-31.

[12]   Gelin, J.C. (1998) Modelling of Damage in Metal Forming Processes. Journal of Materials Processing Technology, 80-81, 24-32.
http://dx.doi.org/10.1016/S0924-0136(98)00207-6

[13]   Imad, A. (2002) Sur la rupture ductile basée sur l’endommagement continu dans le cas d’un acier. Mécanique & Industries, 3, 45-50.
http://dx.doi.org/10.1016/S1296-2139(01)01132-0

[14]   Andrade Pires, F.M., De Souza Neto, E.A. and Wen, D.RJ. (2004) On the Finite Element Prediction of Damage Growth and Fracture Initiation in Finitely Deforming Ductile Materials. Computer Methods in Applied Mechanics and Engineering, 193, 5223-5256.
http://dx.doi.org/10.1016/j.cma.2004.01.038

[15]   Teixeira, P., Santos, A.D., Andrade Pires, F.M. and César de Sá, J.M.A. (2006) Finite Element Prediction of Ductile Fracture in Sheet Metal Forming Processes. Journal of Materials Processing Technology, 177, 278-281.
http://dx.doi.org/10.1016/j.jmatprotec.2006.04.059

[16]   Pereira, I.M., Rubimb, G., Acselradc, O. and Cetlin, P.R. (2008) Comparison of the Experimental and the Numerically Predicted Mechanical Damage in the Sheet Forming of Steel. Journal of Materials Processing Technology, 203, 13-18.
http://dx.doi.org/10.1016/j.jmatprotec.2007.09.083

[17]   Ghouati, O. and Gelin, J.C. (1998) Identification of Material Parameters Directly from Metal Forming Processes. Journal of Materials Processing Technology, 80-81, 560-564.
http://dx.doi.org/10.1016/S0924-0136(98)00159-9

[18]   Flores, P. (2005) Development of Experimental Equipment and Identification Procedures for Sheet Metal Constitutive Laws. PhD Thesis, University of Liege, Liege.

[19]   Cooreman, S., Lecompte, D., Sol, H., Vantomme, J. and Debruyne, D. (2007) Elasto-Plastic Material Parameter Identification by Inverse Methods: Calculation of the Sensitivity Matrix. International Journal of Solids and Structures, 44, 4329-4341.
http://dx.doi.org/10.1016/j.ijsolstr.2006.11.024

[20]   Feng, X.-T. and Yang, C.X. (2001) Genetic Evolution of Nonlinear Material Constitutive Models. Computer Methods in Applied Mechanics and Engineering, 190, 5957-5973.
http://dx.doi.org/10.1016/S0045-7825(01)00207-9

[21]   Huber, N. and Tsakmakis, Ch. (2001) A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model with Static Recovery. Computer Methods in Applied Mechanics and Engineering, 191, 353-384.
http://dx.doi.org/10.1016/S0045-7825(01)00278-X

[22]   Papadrakakis, M. and Lagaros, N.D. (2002) Reliability-Based Structural Optimization Using Neural Networks and Monte Carlo Simulation. Computer Methods in Applied Mechanics and Engineering, 191, 3491-3507.
http://dx.doi.org/10.1016/S0045-7825(02)00287-6

[23]   Nelder, J.A. and Mead, R. (1965) A Simplex Method for Function Minimization. The Com- puter Journal, 7, 308-313.
http://dx.doi.org/10.1093/comjnl/7.4.308

[24]   Ayadi, M., Cherouat, A., Slimani, F., Rezgui, M.A. and Zghal, A. (2011) Experimental and Numerical Modelling of Thermo-Forming of Anisotropic Thin Sheet. Applied Mechanics and Materials, 62, 37-48.
http://dx.doi.org/10.4028/www.scientific.net/AMM.62.37

[25]   Bonnet, M. and Constantinescu, A. (2005) Inverse Problems in Elasticity. Inverse Problems, 21, R1-R50.
http://dx.doi.org/10.1088/0266-5611/21/2/R01

[26]   Avril, S., Bonnet, M., Bretelle, A.S., Grediac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E. and Pierron, F. (2008) Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements. Experimental Mechanics, 48, 381-402.
http://dx.doi.org/10.1007/s11340-008-9148-y

[27]   Ramault, C., Makris, A., Sol, H., Van Hemelrijck, D., Lecompte, D., Lamkanfi, E. and Van Paepegem, W. (2009) Development of an Inverse Method for Material Characterization Using a Biaxially Loaded Cruciform Composite Specimen. Proceedings of the SEM Annual Conference, Albuquerque, 1-4 June 2009.

[28]   Ayadi, M., Rezgui, M.A., Cherouat, A., Slimani, F. and Nasri, T.M. (2009) Contribution à la modélisation expérimentale et numérique des instabilités plastiques en hydroformage des tôles minces. Mécanique & Industries, 10, 503-518.
http://dx.doi.org/10.1051/meca/2010009

[29]   Cherouat, A., Ayadi, M. and Rezgui, M.A. (2011) Contribution of Strain Hardening Law Coupled to Damage and Remeshing Procedure in the Localization of Plastic Instabilities Application to Hydroforming Processes. International Journal for Computational Methods in Engineering Science and Mechanics, 12, 114-133.
http://dx.doi.org/10.1080/15502287.2011.564268

[30]   Oliveira, I, Teixeira, P, Ferreira, F. and Reisa, A. (2015) Inverse Characterization of Material Constitutive Parameters for Dynamic Applications. Procedia Engineering, 114, 784-791.
http://dx.doi.org/10.1016/j.proeng.2015.08.027

 
 
Top