Back
 MSA  Vol.7 No.11 , November 2016
Evaluation of Nevirapine Release Kinetics from Polycaprolactone Hybrids
Abstract: The Nevirapine (NVP)/Polycaprolactone (PCL)/Nanoparticles hybrids systems have been developed as a potential platform for drug delivery, by solvent cast, as thin films. NVP, an antiretroviral drug, was included within PCL matrix containing three types of nanoparticles: an organoclay layered silicate Viscogel S7®(3% w/w), hydrophilic silica oxide particles Aerosil® A20 (0.25% w/w) and titanium dioxide particles (0.25% w/w). These systems were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), low-field nuclear magnetic resonance (NMR), ultraviolet-visible spectroscopy (UV), in-vitro dissolution testing and drug release mechanism kinetics. The PCL crystallization was affected by NVP incorporation, modifying its semi-crystalline structure to a less ordered structure. When nanoparticles and NVP were added, the T1H values increased, for PCL, PCL/S7, PCL/ SiO2 and PCL/TiO2 hybrids, suggesting that its addition produced a new material, with less molecular mobility, due to the new intermolecular interactions formation. It can consider a structure formation among the PCL chains, nanoparticles and NVP, with strong forces in the PCL/SiO2/NVP system. The amount of NVP included was around 1.5 ± 0.03 mg/cm2. In the in-vitro dissolution test, the PCL/SiO2/NVP system released the smallest amount of drug and this result could be attributed to the strong intermolecular interaction between the drug and the PCL/SiO2 system. Higuchi’s model was the mathematical model chosen to treat the release data, since this model presented the highest coefficient correlation (r) value. The drug release probably occur by diffusion through the matrix pores, thus, these materials are suitable for sustained release of NVP.
Cite this paper: Monteiro, M. , Lunz, J. , Sebastião, P. and Tavares, M. (2016) Evaluation of Nevirapine Release Kinetics from Polycaprolactone Hybrids. Materials Sciences and Applications, 7, 680-701. doi: 10.4236/msa.2016.711055.
References

[1]   Arslan, M., Tasdelen, M.A., Uyar, T. and Yagci, Y. (2015) Poly(Epsilon Caprolactone)/Clay Nanocomposites via Host-Guest Chemistry. European Polymer Journal, 71, 259-267.
http;//dx.doi.org/10.1016/j.eurpolymj.2015.08.006

[2]   Yan, L. and Chen, X. (2013) Nanocrystalline Materials. 2rd Edition, Elsevier, Amsterdam, 221-268.

[3]   Mclauchlin, A.R. and Thomas, N.L. (2012) Biodegradable Polymer Nanocomposites. In: Advances in Polymer Nanocomposites: Types and Applications, 398-430.
http;//dx.doi.org/10.1533/9780857096241.2.398

[4]   Dornelas, C.B., Silva, A.M., Dantas, C.B., Rodrigues, C.R., Coutinho, S.S., Sathler, P.C., Castro, H.C., Dias, L.R., Sousa, V.P. and Cabral, L.M. (2011) Preparation and Evaluation of a New Nano Pharmaceutical Excipients and Drug Delivery System Based in Polyvinyl-pyrrolidone and Silicate. Journal of Pharmacy and Pharmaceutical Sciences, 14, 17-35.
http;//dx.doi.org/10.18433/J3HC72

[5]   Rodrigues, L.A.S., Figueiras, A., Veiga, F., Freitas, R.M., Cunha Nunes, L.C., Silva Filho, E.C. and Leite, C.M.S. (2013) The Systems Containing Clays Minerals from Modified Drug Release: A Review. Colloids and Surfaces B: Biointerfaces, 103, 642-651.
http;//dx.doi.org/10.1016/j.colsurfb.2012.10.068

[6]   Dash, T.K. and Konkimalla, B. (2012) Poly-ε-Caprolactone Based Formulations for Drug Delivery and Tissue Engineering: A Review. Journal of Controlled Release, 158, 15-33.
http;//dx.doi.org/10.1016/j.jconrel.2011.09.064

[7]   Liu, M., Chen, L., Zhao, Y., Gan, L., Zhu, D., Xiong, W., Lv, Y., Xu, Z., Hao, Z. and Chen, L. (2012) Preparation, Characterization and Properties of Liposome-Loaded Polycaprolactone Microspheres as a Drug Delivery System. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 395, 131-136.
http;//dx.doi.org/10.1016/j.colsurfa.2011.12.017

[8]   Schäler, K., Ostas, E., Schröter, K., Thurn-Albrecht, T., Binder, W.H. and Saalwächter, K. (2011) Influence of Chain Topology on Polymer Dynamics and Crystallization. Investigation of Linear and Cyclic Poly(ε-Caprolactone)s by 1H Solid-State NMR Methods. Macromolecules, 44, 2743-2754.
http;//dx.doi.org/10.1021/ma102838c

[9]   Pena, J.A., Gutiérrez, S.J., Villamil, J.C., Agudelo, N.A. and Pérez, L.D. (2016) Policaprolactone/Polyvinylpyrrolidone/Siloxane Hybrid Materials: Synthesis and in Vitro Delivery of Diclofenac and Biocompatibility with Periodontal Ligament Fibroblasts. Materials Science and Engineering: C, 58, 60-69.
http;//dx.doi.org/10.1016/j.msec.2015.08.007

[10]   Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I. and Aguzzi, C. (2010) Current Challenges in Clay Minerals for Drug Delivery. Applied Clay Science, 48, 291-295.
http;//dx.doi.org/10.1016/j.clay.2010.01.007

[11]   Shi, R., Magaye, R., Castranova, V. and Zhao, J. (2013) Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data. Particle and Fibre Toxicology, 10, 15.
http;//dx.doi.org/10.1186/1743-8977-10-15

[12]   Moosavi, M.A. and Rahmati, M. (2016) Titanium Dioxide (TiO2) Nanostructures as an Ideal Tumor-Targeted Drug Delivery System. Austin Therapeutics, 2, 1016.

[13]   Barbé, C., Bartlett, J., Kong, L., Finnie, K., Lin, H.Q., Larkin, M., Calleja, S., Bush, A. and Calleja, G. (2004) Silica Particles: A Novel Drug-Delivery System. Advanced Materials, 16, 1959-1966.
http;//dx.doi.org/10.1002/adma.200400771

[14]   Catauro, M., Bollino, F., Papale, F., Piccolella, S. and Pacifico, S. (2016) Sol-Gel Synthesis and Characterization of SiO2/PCL Hybrid Materials Containing Quercetin as New Materials for Antioxidant Implants. Materials Science and Engineering: C, 58, 945-952.
http;//dx.doi.org/10.1016/j.msec.2015.09.054

[15]   Jindal, N. and Mehta, S.K. (2015) Nevirapine Loaded Poloxamer 407/Pluronic P123 Mixed Micelles: Optimization of Formulation and in Vitro Evaluation. Colloids and Surfaces B: Biointerfaces, 129, 100-106.
http;//dx.doi.org/10.1016/j.colsurfb.2015.03.030

[16]   Kuo, Y.-C. and Chung, J.-F. (2011) Physicochemical Properties of Nevirapine-Loaded Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. Colloids and Surfaces B: Biointerfaces, 83, 299-306.
http;//dx.doi.org/10.1016/j.colsurfb.2010.11.037

[17]   Stieger, N., Caira, M.R., Liebenberg, W., Tiedt, L.R., Wessels, J.C. and Villiers, M.M. (2010) Influence of the Composition of Water/Ethanol Mixtures on the Solubility and Recrystallization of Nevirapine. Crystal Growth & Design, 10, 3859-3868.
http;//dx.doi.org/10.1021/cg901501d

[18]   Caxias, U., Antunes, A.M.M., Marinho, A.T., Godinho, A.L.A., Grilo, N.M., Marques, M.M., Oliveira, M.C., Branco, T., Monteiro, E.C. and Pereira, S.A. (2012) Evidence for Nevirapine Bioactivation in Man: Searching for the First Step in the Mechanism of Nevirapine Toxicity. Toxicology, 301, 33-39.
http;//dx.doi.org/10.1016/j.tox.2012.06.013

[19]   Monteiro, M.S.S.B., Rodrigues, C.L., Neto, R.C. and Tavares, M.I.B. (2012) The Structure of Polycaprolactone-Clay Nanocomposites Investigated by 1H NMR Relaxometry. Journal of Nanoscience and Nanotechonology, 12, 7307-7313.
http;//dx.doi.org/10.1166/jnn.2012.6431

[20]   Monteiro, M.S.S.B., Neto, R.C., Souza, I.C.S., Silva, E.O. and Tavares, M.I.B. (2012) In-organic-Organic Hybrids Based on Poly(ε-Caprolactone) and Silica Oxide and Characterization by Relaxometry Applying Low-Field NMR. Materials Research, 15, 825-832.
http;//dx.doi.org/10.1590/S1516-14392012005000121

[21]   Monteiro, M.S.S.B., Chávez, F.V., Sebastiáo, P.J. and Tavares, M.I.B. (2013) 1H NMR Relaxometry and X-Ray Study of PCL/Nevirapine Hybrids. Polymer Testing, 32, 553-566.
http;//dx.doi.org/10.1016/j.polymertesting.2013.01.016

[22]   Sebastião, P.J., Monteiro, M.S.S.B., Brito, L.M., Rodrigues, E., Chávez, F. and Tavares, M.I.B. (2016) Conventional and Fast Field Cycling Relaxometry Study on the Molecular Dynamics in Polymer Nanocomposites for Use as Drug Delivery System. Journal of Nano-science and Nanotechnology, 16, 7539-7545.
http;//dx.doi.org/10.1166/jnn.2016.12476

[23]   Wu, T.M., Cheng, J.-C. and Yan, M.-C. (2003) Crystallization and Thermoelectric Behavior of Conductive-Filler-Filled Poly(ε-Caprolactone)/Poly(Vinylbutyral)/Montmorillonite Nano-compostes. Polymer, 44, 2553-2562.
http;//dx.doi.org/10.1016/S0032-3861(03)00106-X

[24]   Ayala, G.G., Pace, E.D., Laurienzo, P., Pantalena, D., Somma, E. and Nobila, M.R. (2009) Poly(ε-Caprolactone) Modified by Functional Groups: Preparation, and Chemical-Physical Investigation. European Polymer Journal, 45, 3217-3229.
http;//dx.doi.org/10.1016/j.eurpolymj.2009.07.021

[25]   Sarkar, M., Khandavilli, S. and Panchagnula, R. (2006) Development and Validation of RP-HPLC and Ultraviolet Spectrophotometric Methods of Analysis for the Quantitative Estimation of Antiretroviral Drugs in Pharmaceutical Dosage Forms. Journal of Chromato-raphy B, 830, 349-354.
http;//dx.doi.org/10.1016/j.jchromb.2005.11.014

[26]   Grangeiro Jr., S., Strattmann, R.R., Albuquerque, M.M., Araújo, A.A.S., Matos, J.R. and Rolim Neto, P.J. (2006) In Vitro Evaluation of Dissolution Profiles and Thermal Properties of Some Commercial Formulations of Nevirapine Tablets. Acta Farmacéutica Bonaerense, 25, 76-82.

[27]   Sarkar, M., Perumal, O.P. and Panchagnula, R. (2008) Solid-State Characterization of Nevirapine. Indian Journal of Pharmaceutical Sciences, 70, 619-630.
http;//dx.doi.org/10.4103/0250-474X.45401

[28]   Dash, S., Murthy, P.N, Nath, L. and Chowdhury, P. (2010) Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Poloniae Pharmaceutica, 67, 217-223.

[29]   Costa, P.J.C. (2002) Avaliação in vitro da lioequivalência de formulações farmacêuticas. Revista Brasileira de Ciências Farmacêuticas, 38, 141-153.
http;//dx.doi.org/10.1590/s1516-93322002000200003

[30]   Wiens, M., Elkhooly, T.A., Schröder, H.C., Mohamed, T.H.A. and Müller, W.E.G. (2014) Characterization and Osteogenic Activity of a Silicatein/Biosilica-Coated Chitosan-Graft-Polycaprolactone. Acta Biomaterialia, 10, 4456-4464.
http;//dx.doi.org/10.1016/j.actbio.2014.06.036

[31]   Sahoo, S., Sasmal, A., Nanda, R., Phani, A.R. and Nayak, P.L. (2010) Synthesis of Chitosan-Polycaprolactone Blend for Control Delivery of Ofloxacin Drug. Carbohydrate Polymers, 79, 106-113.
http;//dx.doi.org/10.1016/j.carbpol.2009.07.042

[32]   Sanganwar, G.P., Sathigari, S., Babu, R.J. and Gupta, R.B. (2010) Simultaneous Production and Co-Mixing of Microparticles of Nevirapine with Excipients by Supercritical Antisolvent Method for Dissolution Enhancement. European Journal of Pharmaceutical Sciences, 39, 164-174.
http;//dx.doi.org/10.1016/j.ejps.2009.11.011

[33]   Zou, H., Wi, S. and Shen, J. (2008) Polymer/Silica Nanocomposites: Preparation, Characte-rization, Properties and Applications. Chemical Reviews, 108, 3893-3957.
http;//dx.doi.org/10.1021/cr068035q

[34]   Passos, A.A., Tavares, M.I.B., Neto, R.C.P. and Ferreira, A.G. (2012) The Use of Solid State NMR to Evaluate EVA/Silica Films. Journal of Nano Research, 18-19, 219-226.
http;//dx.doi.org/10.4028/www.scientific.net/JNanoR.18-19.219

[35]   Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. and Kumar, R. (2013) Surface Modification of Inorganic Nanoparticles for Development of Organic-Inorganic Nanocomposites—A Review. Progress in Polymer Science, 38, 1232-1261.
http;//dx.doi.org/10.1016/j.progpolymsci.2013.02.003

[36]   Wu, T., Xie, T. and Yang, G. (2009) Preparation and Characterization of Poly(ε-Capro-lactone)/Na+-MMT Nanocomposites. Applied Clay Science, 45, 105-110.
http;//dx.doi.org/10.1016/j.clay.2009.02.009

[37]   Elzein, T., Nasser, M.E., Delaite, C., Bistac, S. and Dumas, P. (2004) FTIR Study of Polycaprolactone Chain Organization at Interfaces. Journal of Colloid and Interface Science, 273, 381-387.
http;//dx.doi.org/10.1016/j.jcis.2004.02.001

[38]   Pereira, B.G., Fonte-Boa, F.D., Resende, J.A.L.C., Pinheiro, C.B., Fernandes, N.G., Yoshida, M.I. and Vianna-Soares, C.D. (2007) Pseudopolymorphs and Intrinsic Dissolution of Nevirapine. Crystal Growth & Design, 7, 2016-2023.
http;//dx.doi.org/10.1021/cg0704495

[39]   Shoaib, M.H., Tazeen, J., Merchant, H.á. and Yousuf, R.I. (2006) Evaluation of Drug Release Kinetics from Ibuprofen Matrix Tablets Using HPMC. Pakistan Journal of Pharmaceutical Science, 19, 119-124.

[40]   Paul, D.R. (2011) Elaborations on the Higuchi Model for Drug Delivery. International Journal of Pharmaceutics, 418, 13-17.
http;//dx.doi.org/10.1016/j.ijpharm.2010.10.037

[41]   Petropoulos, J.H., Papadokostaki, K.G. and Sanopoulou, M. (2012) Higuchi’s Equation and beyond: Overview of the Formulation and Application of a Generalized Model of Drug Release from Polymeric Matrices. International Journal of Pharmaceutics, 437, 178-191.
http;//dx.doi.org/10.1016/j.ijpharm.2012.08.012

[42]   Siepmann, J. and Peppas, N.A. (2011) Higuchi Equation: Derivation, Applications, Use and Misuse. International Journal of Pharmaceutics, 418, 6-12.
http;//dx.doi.org/10.1016/j.ijpharm.2011.03.051

[43]   Badder, R.A. and Putnam, D.A. (2014) Engineering Polymer Systems for Improved Drug Delivery. John Willey & Sons, 496 p.

 
 
Top