IJOC  Vol.6 No.4 , December 2016
Spectrofluorometric Study of the Inclusion Complexation of Fluorescent Whitening Agents and β-Cyclodextrins
Abstract: The inclusion complexation behavior of 2,5-Bis(5-tert-butyl-benzoxazol-2yl)-thiophene (UVOB) with native β-cyclodextrin (βCD) and βCD-monochlorotriazinyl (βCD-MCT) was evaluated by fluorescence spectroscopy. The association constant (Ks), stoichiometry, , and were evaluated at 25 ± 0.1 in phosphate buffer solution (pH = 10.5, 0.1 mo•dm3) in order to find out the complex formation ability and stability. Fluorescence enhancement for UVOB and UVBNB with both CDs has been observed as a result of the complex formation. A stoichiometry 1:1 for UVOB in both CDs was observed; a stoichiometry 3:1 for UVBNB in both CDs has been observed. The Ksvalues for UVOB were 4916 ± 137 M1 and 655 ± 19 M1 (acetone: water 90/10, v/v) with βCD and βCD-MCT, respectively. The value obtained indicates a spontaneous and stable complex formation, but the complex βCD-UVOB showed high Ks value as an indicative of a high concentration of complex formed. Additionally, Ks and thermodynamic parameters and were evaluated in a commercial product UVBNB (UVOB, 13%, v/v). In aqueous solution, the values obtained were 2552 ± 115 and 1787 ± 75 M1 respectively. Complexation of UVOB with CDs is an interesting approach for utilization of UVOB in aqueous systems without the need of solvents and or surfactants used in commercial product (UVBNB).
Cite this paper: Barragán, C. , Fornué, E. , Ortega, J. , González, G. and Quiñones, H. (2016) Spectrofluorometric Study of the Inclusion Complexation of Fluorescent Whitening Agents and β-Cyclodextrins. International Journal of Organic Chemistry, 6, 192-206. doi: 10.4236/ijoc.2016.64020.

[1]   Szejtli, J. (1982) Cyclodextrins and Their Inclusion Complexes. Akadémiai Kiadó, Budapest.

[2]   Szejtli, J. (1988) Cyclodextrin Technology. Vol. 1., Springer Netherlands, Dordrecht.

[3]   Rekharsky, M.V. and Inoue, Y. (1998) Complexation Thermodynamics of Cyclodextrins. Chemical Reviews, 98, 1875-1918.

[4]   Shanmugam, M., Ramesh, D., Nagalakshmi, V., Kavitha, R., Rajamohan, R. and Stalin, T. (2008) Host-Guest Interaction of l-Tyrosine with β-Cyclodextrin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 125-132.

[5]   Berberan-Santos, M.N., Choppinet, P., Fedorov, A., Jullien, L. and Valeur, B. (2000) Multichromophoric Cyclodextrins. 8. Dynamics of Homo- and Heterotransfer of Excitation Energy in Inclusion Complexes with Fluorescent Dyes. Journal of the American Chemical Society, 122, 11876-11886.

[6]   Liu, L. and Guo, Q.X. (2002) The Driving Forces in the Inclusion Complexation of Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 42, 1-14.

[7]   Bakkour, Y., Vermeersch, G., Morcellet, M., Boschin, F., Martel, B. and Azaroual, N. (2006) Formation of Cyclodextrin Inclusion Complexes with Doxycyclin-Hyclate: NMR Investigation of Their Characterisation and Stability. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 54, 109-114.

[8]   Park, J.W. (2006) Fluorescence Methods for Studies of Cyclodextrin Inclusion Complexation and Excitation Transfer in Cyclodextrin Complexes. In: Douhal, A., Ed., Cyclodextrin Materials Photochemistry, Photophysics and Photobiology, Elsevier, Amsterdam, 1-61.

[9]   Fenyvesi, É., Otta, K., Kolbe, I., Novák, C. and Szejtli, J. (2004) Cyclodextrin Complexes of UV Filters. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 48, 117-123.

[10]   Fukahori, T., Ugawa, T. and Nishikawa, S. (2002) Molecular Recognition Kinetics of Leucine and Glycyl-Leucine by β-Cyclodextrin in Aqueous Solution in Terms of Ultrasonic Relaxation. Journal of Physical Chemistry A, 106, 9442–9445.

[11]   Hamai, S. (1989) Room-Temperature Phosphorescence from 1:1:1 Inclusion Compounds. Journal of the American Chemical Society, 111, 3954-3957.

[12]   Harada, A., Furue, M. and Nozakura, S. (1977) Interaction of Cyclodextrin-Containing Polymers with Fluorescent Compounds. Macromolecules, 10, 676-681.

[13]   Guzzo, M.R., Uemi, M., Donate, P.M., Nikolaou, S., Machado, A.E.H. and Okano, L.T. (2006) Study of the Complexation of Fisetin with Cyclodextrins. Journal of Physical Chemistry A, 110, 10545-10551.

[14]   Harada, A., Hashidzume, A. and Miyauchi, M. (2006) Polymers Involving Cyclodextrin Moieties. In: Dodziuk, H., Ed., Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, Wiley, Hoboken, 65-92.

[15]   Poór, M., Matisz, G., Kunsági-Máté, S., Derdák, D., Szente, L. and Lemli, B. (2016) Fluorescence Spectroscopic Investigation of the Interaction of Citrinin with Native and Chemically Modified Cyclodextrins. Journal of Luminescence, 172, 23-28.

[16]   Sueishi, Y., Fujita, T., Nakatani, S., Inazumi, N. and Osawa, Y. (2013) The Enhancement of Fluorescence Quantum Yields of Anilino Naphthalene Sulfonic Acids by Inclusion of Various Cyclodextrins and Cucurbit[7]Uril. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 344-349.

[17]   Jiang, Z.-T., Guo, Y.-X. and Li, R. (2010) Spectrophotometric Determination of Trace Nitrite with Brilliant Cresyl Blue Using β-Cyclodextrin as a Sensitizer. Food Analytical Methods, 3, 47-53.

[18]   Horvath, G., Premkumar, T., Boztas, A., Lee, E., Jon, S. and Geckeler, K.E. (2008) Supramo- lecular Nanoencapsulation as a Tool: Solubilization of the Anticancer Drug trans-Dichlo- ro(Dipyridine)Platinum(II) by Complexation with β-Cyclodextrin. Molecular Pharmaceutics, 5, 358-363.

[19]   Zhang, Q., Deng, T., Li, J., Xu, W., Shen, G. and Yu, R. (2015) Cyclodextrin Supramolecular Inclusion-Enhanced Pyrene Excimer Switching for Time-Resolved Fluorescence Detection of Biothiols in Serum. Biosensors & Bioelectronics, 68, 253-258.

[20]   Andrade, F.E., Ramírez, O.J., García, B.C., Muñoz, C.E., Bravo, I.L., Regla, G.L. and Delgado, V.H. (2006) Efecto de la modificación de fibras de celulosa con el complejo β-ciclodex- trina: agente fluorescente de blanqueo (βCD: AFB) sobre las propiedades ópticas de blancura, brillo y cromaticidad. 27th Encuentro Nacional de la AMIDIQ, Ixtapa, Guerrero, México, MAT70-MAT77.

[21]   Delgado-Fornué, L.R., Giacomozzi-Vegas, E., Contreras-Quiñones, D.E. Andrade-Ortega, H.J. and Bravo-García, J.A. (2003) Molecular Encapsulation of Optical Brighteners in Cyclodextrin-Modified Pulp Fibers. 12th International Symposium on Wood and Pulping Chemistry, Madison, 9-12 June 2003, 369-372.

[22]   Ramírez, O.J.A., Leyva, B.C.A., Delgado, R.N. and Andrade, F.E. (2009) Estudio de la fijación por inmersión de complejos ciclodextrina-blanqueadores ópticos a superficies celulósicas mediante espectrofluorometría en solución. 30th Encuentro Nacional de la AMIDIQ, Mazatlán, Sinaloa, México, 1411-1416.

[23]   Benesi, H.A. and Hildebrand, J.H. (1949) A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. Journal of the American Chemical Society, 71, 2703-2707.

[24]   Hoenigman, S.M. and Evans, C.E. (1996) Improved Accuracy and Precision in the Determination of Association Constants. Analytical Chemistry, 68, 3274-3276.

[25]   Wang, R. and Yu, Z. (2007) Validity and Reliability of Benesi-Hildebrand Method. Acta Physico-Chimica Sinica, 23, 1353-1359.

[26]   Catena, G. and Bright, F.V. (1989) Thermodynamic Study on the Effects of Beta-cyclodex- trin Inclusion with Aniline Naphthalenesulfonates. Analytical Chemistry, 61, 905-909.

[27]   Hirose, K. (2001) A Practical Guide for the Determination of Binding Constants. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 39, 193-209.

[28]   Hirose, K. (2007) Determination of Binding Constants. In: Schalley, C., Ed., Analytical Methods in Supramolecular Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 17-54.