Back
 MSA  Vol.7 No.11 , November 2016
Effect of Revolution on Inhomogeneous Deformation of IF Steel in High Pressure Torsion
Abstract: The effect of revolution on inhomogeneous plastic deformation of HPT processed IF steel was investigated using experimental and simulation approaches. The results indicate that the degree of inhomogeneous plastic deformation increases as the revolutions increase along the radial direction on the transversal plane of disks. In addition, the hardness and the microstructure distributions verify the trend that the effective strain of the HPT processed disks at the early torsion stage is gradually deformed from the edge to the center with the revolutions increases.
Cite this paper: Song, Y. , Chen, M. , Xu, B. , Gao, D. and Kim, H. (2016) Effect of Revolution on Inhomogeneous Deformation of IF Steel in High Pressure Torsion. Materials Sciences and Applications, 7, 673-679. doi: 10.4236/msa.2016.711054.
References

[1]   Xie, Z.L., Xie, J.J., Hong, Y.S. and Wu, X.L. (2010) Influence of Processing Temperature on Microstructure and Microhardness of Copper Subjected to High-pressure Torsion. Science China Technological Sciences, 53, 1534-1539.
http://dx.doi.org/10.1007/s11431-010-3157-7

[2]   Kim, H.S., Estrin, Y. and Bush, M.B. (2000) Plastic Deformation Behaviour of Fine-Grained Materials. Acta Materialia, 48, 493-504.
http://dx.doi.org/10.1016/S1359-6454(99)00353-5

[3]   Kim, H.S. and Estrin, Y. (2001) Ductility of Ultrafine Grained Copper. Applied Physis Letters, 79, 4115-4117.
http://dx.doi.org/10.1063/1.1426697

[4]   Xu, Ch., Horita, Z.J. and Langdon, T.G. (2008) The Evolution of Homogeneity in an Aluminum Alloy Processed Using High-Pressure Torsion. Acta Materialia, 56, 5168-5176.
http://dx.doi.org/10.1016/j.actamat.2008.06.036

[5]   Zhilyaev, A.P. and Langdon, T.G. (2008) Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications. Progress in Materials Science, 53, 893-979.
http://dx.doi.org/10.1016/j.pmatsci.2008.03.002

[6]   Figueiredo, R.B., Aguilar, M.T.P., Cetlin, P.R. and Langdon, T.G. (2011) Deformation Heterogeneity on the Cross-Sectional Planes of a Magnesium Alloy Processed by High-Pressure Torsion. Metallurgical and Materials Transactions A, 42, 3013-3021.
http://dx.doi.org/10.1007/s11661-011-0609-z

[7]   Hohenwarter, A., Bachmaier, A., Gludovatz, B., Scheriau, S. and Pippan, R. (2009) Technical Parameters Affecting Grain Refinement by High Pressure Torsion. International Journal of Materials Research, 100, 1653-1661.
http://dx.doi.org/10.3139/146.110224

[8]   Zhilyaev, A.P., Oh-ishi, K., Langdon, T.G. and McNelley, T.R. (2005) Microstructural Evolution in Commercial Purity Aluminum during High Pressure Torsion. Materials Science and Engineering A, s410-s411, 277-280.

[9]   Edalati, K., Fujioka, T. and Horita, Z. (2008) Microstructure and Mechanical Properties of Pure Cu Processed by High-pressure Torsion. Materials Science and Engineering A, s1-s2, 168-173.

[10]   Kim, H.S., Ryu, W.S., Janecek, M., Baik, M. and Estrin, Y. (2005) Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of IF Steel. Advanced Engineering Materials, 7, 43-46.
http://dx.doi.org/10.1002/adem.200400146

[11]   Hebesberger, T., Stuwe, H.P., Vorhauer, A., Wetscher, F. and Pippan, R. (2005) Structure of Cu Deformed by High Pressure Torsion. Acta Materialia, 53, 393-402.
http://dx.doi.org/10.1016/j.actamat.2004.09.043

[12]   Song, Y.P., Wang, W.K., Gao, D.S., Yoon, E.Y., Lee, D.J., Lee, Ch.S. and Kim, H.S. (2013) Hardness and Microstructure of Interstitial Free Steels in the Early Stage of High-Pressure Torsion. Journal of materials science, 48, 4698-4705.
http://dx.doi.org/10.1007/s10853-012-7031-9

[13]   Song, Y.P., Wang, W.K., Gao, D.S., Yoon, E.Y., Lee, D.J. and Kim, H.S. (2014) Finite Element Analysis of the Effect of Friction in High Pressure Torsion. Metals and Materials International, 20, 445-450.
http://dx.doi.org/10.1007/s12540-014-3007-4

[14]   Song, Y.P., Yoon, E.Y., Lee, D.J., Lee, J.H. and Kim, H.S. (2011) Mechanical Properties of Copper after Compression Stage of High-Pressure Torsion. Materials Science and Engineering A, 582, 4840-4844.
http://dx.doi.org/10.1016/j.msea.2011.02.020

[15]   Sakai, G., Nakamura, K., Horita, Z. and Langdon, T.G. (2005) Developing High-Pressure Torsion for Use with Bulk Samples. Materials Science and Engineering A, 406, 268-273.
http://dx.doi.org/10.1016/j.msea.2005.06.049

[16]   Song, Y.P., Wang, W.K., Lee, D.J., Jeong, H.J., Lee, S. and Kim, H.S. (2015) Thickness Inhomogeneity in Hardness and Microstructure of Copper after the Compressive Stage in High-pressure Torsion. Metals and Materials International, 21, 7-13.
http://dx.doi.org/10.1007/s12540-015-1002-z

[17]   Xu, Ch., Horita, Z.J. and Langdon, T.G. (2007) The Evolution of Homogeneity in Processing by High-Pressure Torsion. Acta Materialia, 55, 203-212.
http://dx.doi.org/10.1016/j.actamat.2006.07.029

[18]   Estrin, Y., Molotnikov, A., Davies, C.H.J. and Lapovok, R. (2008) Strain Gradient Plasticity Modelling of High-Pressure Torsion. Journal of the Mechanics & Physics of Solids, 56, 1186-1202.
http://dx.doi.org/10.1016/j.jmps.2007.10.004

[19]   Lee, D.J., Yoon, E.Y., Park, L.J. and Kim, H.S. (2012) The Dead Metal Zone in High-Pressure Torsion. Scripta Materiallia, 67, 384-387.

[20]   Lee, D.J. and Kim, H.S. (2014) Finite Element Analysis for the Geometry Effect on Strain. Journal of Materials Science, 49, 6620-6628.
http://dx.doi.org/10.1007/s10853-014-8283-3

 
 
Top