JWARP  Vol.8 No.12 , November 2016
Characterization of Soil Bacterial Diversity in Relation to Irrigation Water: A Case Study in China
Abstract: Use of wastewater for irrigation has become indispensable worldwide due to accelerating water scarcity, and it also carries a social dimension of poverty reduction in developing countries. However, the impacts of wastewater irrigation on soil properties are still insufficiently understood, especially with regard to change in soil microbial community characteristics. The present study presents an assessment of soil bacterial communities subjecting to different irrigation waters. We conducted soil sampling in farmlands irrigated with wastewater, river water and groundwater respectively in an arid region of China and performed a metagenomic survey of microbial populations using the prokaryotic 16S ribosomal RAN gene. It sheds new light on possible alteration of soil bacterial diversity due to irrigation water. It also reveals that the relative abundance of nitrifying bacteria is greater in soil irrigated with river water than soil irrigated with wastewater. The opposite is true for denitrifying bacteria. The findings serve as a call for further in-depth study to explore the long-term responses of soil microbial communities to irrigation waters for the sake of environmentally sound watershed management.
Cite this paper: Huang, G. , Takahashi, W. , Liu, H. , Saito, T. and Kimura, N. (2016) Characterization of Soil Bacterial Diversity in Relation to Irrigation Water: A Case Study in China. Journal of Water Resource and Protection, 8, 1090-1102. doi: 10.4236/jwarp.2016.812086.

[1]   WHO (2006) WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Vol. I: Policy and Regulatory Aspects. Vol. II: Wastewater Use in Agriculture. Vol. III: Watewater and Excreta Use in Aquaculture. Vol. IV: Excreta and Greywater Use in Agriculture. World Health Organization, Geneva.

[2]   Marsalek, J., Schaefer, K., Excall, K., Brannen, L. and Aidun, B. (2002) Water Reuse and Recycling. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba. CCME Linking Water Science to Policy Workshop Series. Report No. 3.

[3]   Jimenez, B. and Asano, T. (2008) Water Reuse: An International Survey of Current Practices, Issues and Needs. IWA Publishing, London, 650 p.

[4]   Keraita, B., Jiménez, B. and Drechsel, P. (2008) Extent and Implications of Agricultural Reuse of Untreated, Partly Treated and Diluted Wastewater in Developing Countries. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3, (58).

[5]   UNHSP (United Nations Human Settlements Programme) (2008) In: LeBlanc, R., Matthews, P. and Roland, P., Eds., Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource, UN-Habitat, Nairobi, 632 p.

[6]   Raschid-Sally, L. and Jayakody, P. (2008) Drivers and Characteristics of Wastewater Agriculture in Developing Countries: Results from a Global Assessment, Colombo, Sri Lanka. IWMI Research Report 127, International Water Management Institute, Colombo.

[7]   Hussain, I., Raschid, L., Hanjra, M.A., Marikar, F. and Van der Hoek, W. (2001) A Framework for Analyzing Socioeconomic, Health and Environmental Impacts of Wastewater Use in Agriculture in Developing Countries. Working Paper 26. International Water Management Institute (IWMI), Colombo.

[8]   Ujang, Z. and Henze, M. (Eds.) (2006) Municipal Wastewater Management in Developing Countries. Principles and Engineering, IWA Publishing, London.

[9]   Jiménez-Cisneros, B. (1995) Wastewater Reuse to Increase Soil Productivity. Water Science and Technology, 32, 173-180.

[10]   Singh, P.K., Deshbhratar, P.B. and Ramteke, D.S. (2012) Effects of Sewage Wastewater Irrigation on Soil Properties, Crop Yield and Environment. Agricultural Water Management, 103, 100-104.

[11]   Yang, B., Kong, X., Cui, B., Jin, D., Deng, Y., Zhuang, X., Zhuang, G. and Bai, Z. (2015) Impact of Rural Domestic Wastewater Irrigation on the Physicochemical and Microbiological Properties of Pakchoi and Soil. Water, 7, 1825-1839.

[12]   Hanjra, M.A., Blackwell, J., Carr, G., Zhang, F. and Jackson, T.M. (2012) Wastewater Irrigation and Environmental Health: Implications for Water Governance and Public Policy. International Journal of Hygiene and Environmental Health, 215, 255-269.

[13]   Friedel, J.K., Langer, T., Siebe, C. and Stahr, K. (2000) Effects of Long-Term Wastewater Irrigation on Soil Organic Matter, Soil Microbial Biomass and Its Activities in Central Mexico. Biology and Fertility of Soils, 31, 414-421.

[14]   Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R.T. and Minz, D. (2001) Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxydizing Bacteria in Soil. Applied and Environmental Microbiology, 67, 3426-3433.

[15]   Mohammad, M.J. and Mazahreh, N. (2003) Changes in Soil Fertility Parameters in Response to Irrigation of Forage Crops with Secondary Treated Wastewater. Communications in Soil Science and Plant Analysis, 34, 1281-1294.

[16]   Ndour, N.Y.B., Baudoin E. and Guisse, A., Mountakha Seck, M., Khouma, M. and Brauman, A. (2008) Impact of Irrigation Water Quality on Soil Nitrifying and Total Bacterial Communities. Biology and Fertility of Soils, 44, 797-803.

[17]   Becerra-Castro, C., Lopes, A.R., Vaz-Moreira, I. Silva, E.F., Manaia, C.M. and Nunes, O.C. (2015) Wastewater Reuse in Irrigation: A Microbiological Perspective on Implications in Soil Fertility and Human and Environmental Health. Environment International, 75, 117-135.

[18]   Huang, G. (2015) From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation. Sustainability, 7, 8950-8964.

[19]   Zhou, S., Huang, Y., Yu, B. and Wang, G. (2015) Effects of Human Activities on the Eco-Environment in the Middle Heihe River Basin Based on an Extended Environmental Kuznets Curve Model. Ecological Engineering, 76, 14-26.

[20]   Hu, X., Lu, L., Li, X., Wang J. and Guo, M. (2015) Land Use/Cover Change in the Middle Reaches of the Heihe River Basin over 2000-2011 and Its Implications for Sustainable Water Resources Management. PLoS ONE, 10, e0128960.

[21]   Hoshino, Y. and Matsumoto, N. (2004) An Improved DNA Extraction Method Using Skim Milk from Soils That Strongly Absorb DNA. Microbes and Environments, 19, 13-19.

[22]   Hui, L, Zhuwen, X., Shan, Y., Xiaobin, L., Eva, M.T., Ruzhen W., Yuge Z., Jiangping, C., Fei Y., Xingguo, H. and Yong, J. (2016) Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation. Microbial Ecology, 71, 974-989.

[23]   Griebler, C. and Lueders, T. (2009) Microbial Biodiversity in Groundwater Ecosystems. Freshwater Biology, 54, 649-677.

[24]   Wilson, J.T., McNabb, J.F., Balkwill, D.L and Ghiorse, W.C. (1983) Enumeration and Characterization of Bacteria Indigenous to a Shallow Water-Table Aquifer. Groundwater, 21, 134-142.

[25]   Phelps, T.J., Fliermans, C.B., Garland, T.R., Pfiffner, S.M. and White D.C. (1989) Methods for Recovery of Deep Terrestrial Subsurface Sediments for Microbiological Studies. Journal of Microbiological Methods, 9, 267-279.

[26]   Daims, H., Lebedeva, E.L., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H. and Wagner, M. (2015) Complete Nitrification by Nitrospira Bacteria. Nature, 528, 504-509.

[27]   Janssen, P.H. (2006) Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Applied and Environmental Microbiology, 72, 1719-1728.

[28]   Armon, R., Gold, D., Brodsky, M. and Oron, G. (2002) Surface and Subsurface Irrigation with Effluents of Different Qualities and Presence of Cryptosporidium Oocysts in Soil and on Crops. Water Science & Technology, 46, 115-122.