Back
 JWARP  Vol.8 No.12 , November 2016
Contribution to the Study of Hot Water Scaling Phenomenon in the South of Touristic Area in Agadir City
Abstract: This work aims to study the phenomenon of scaling observed in the hot water pipelines in the southern seaside touristic installations of Agadir city. This phenomenon has led to the formation of solid deposits and adherents to the internal walls of the facilities of the hot water. This deposit is at the origin of several technical, economic and environmental problems. It causes a decrease in the lifetime of boilers and a reduction of thermal exchanges and consequently a decrease in the energy efficiency of heating systems. In the present study, the samples of scale have been carried out at different points of hot water pipelines. The characterization of different scale samples recovered was conducted by X-ray fluorescence (XRF), elemental analysis (CHNS-O), infrared spectrometry (IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Analytical results showed that scale samples collected on different sites in touristic hot water system are mostly formed by calcium carbonate. Thermodynamic conditions in the site were favourable to the aragonite variety formation.
Cite this paper: Belattar, M. , Ben-Aazza, S. , Aba-Aaki, R. , Hadfi, A. , Hafid, N. , Boukbir, L. and Driouiche, A. (2016) Contribution to the Study of Hot Water Scaling Phenomenon in the South of Touristic Area in Agadir City. Journal of Water Resource and Protection, 8, 1035-1043. doi: 10.4236/jwarp.2016.812082.
References

[1]   The Regional Council Souss Massa Draa (2013) State of Places Agadir souss Massa Draa. Regional Center of Tourism.

[2]   Agadir, R. (2014) Official Accounts, Management Report, Sector Drinking Water, 14-28.

[3]   Junjun, Y., Kang, X., Changlei, Q., Feng, F., Ananthanarayanan, V. and Saulov, D. (2014) Modeling of CaCO3 Decomposition under CO2/H2O Atmosphere in Calcium Looping Processes. Fuel Processing Technology, 125, 125-138.
http://dx.doi.org/10.1016/j.fuproc.2014.03.036

[4]   Ben, X. and Kristin Poduska, M. (2014) Linking Crystal Structure with Temperature-Sensitive Vibrational Modes in Calcium Carbonate Minerals. Physical Chemistry Chemical Physics, 16, 17634-17639.
http://dx.doi.org/10.1039/C4CP01772B

[5]   Hongxia, G. Zhenping, Q., Qian P., Peng , Y., Suping, C. and Wei, W. (2011) Crystallization of Aragonite CaCO3 with Complex Structures. Advanced Powder Technology, 22, 777-783.
http://dx.doi.org/10.1016/j.apt.2010.11.004

[6]   Vagenas, N.V., Gatsouli, A. and Kontoyannis, C.G. (2003) Quantitative Analysis of Synthetic Calcium Carbonate Polymorphs Using FT-IR Spectroscopy. Talanta, 59, 831-836.
http://dx.doi.org/10.1016/S0039-9140(02)00638-0

[7]   Villiers, J.P.R.D. (1971) Crystal Structures of Aragonite, Strontianite, and Witherite. American Mineralogist, 56, 758-767.

[8]   Nora, H., Leeuw, D. and Stephen, C.P. (1998) Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach. The Journal of Physical Chemistry B, 102, 2914-2922.
http://dx.doi.org/10.1021/jp973210f

[9]   Shu-Chen, H., Kensuke, N. and Yoshiki, C. (2007) A Carbonate Controlled-Addition Method for Amorphous Calcium Carbonate Spheres Stabilized by Poly(acrylic acid)s. Langmuir, 23, 12086-12095.
http://dx.doi.org/10.1021/la701972n

[10]   Titschack, J., Goetz-Neunhoeffer, F. and Neubauer, J. (2011) Magnesium Quantification in Calcites [(Ca,Mg)CO3] by Rietveld-Based XRD Analysis: Revisiting a Well-Established Method. American Mineralogist, 96, 1028-1038.
http://dx.doi.org/10.2138/am.2011.3665

[11]   Nakamura, A., Almeida, A.C., Espinoza, H., Araújo, J.L.F., Gouveia, V.J.P., Carvalho, M.D. and Cardoso, A.V. (2014) Polymorphism of CaCO3 and Microstructure of the Shell of a Brazilian Invasive Mollusc (Limnoperna fortunei). Materials Research, 17, 15-22.
http://dx.doi.org/10.1590/S1516-14392014005000044

[12]   Kontoyannis, C.G. and Vagenas, N.V. (2000) Calcium Carbonate Phase Analysis Using XRD and FT-Raman Spectroscopy. Analyst, 125, 251-255.
http://dx.doi.org/10.1039/a908609i

[13]   Rosset, R., Douville, S., Ben Amor, M. and Walha, K. (1999) The Inhibition of the Scaling by the Geothermal Waters of the South-Tunisian. Journal of Water Science, 12, 753-764.

[14]   Knez, S. and Pohar, C. (2005) The Magnetic Field Influence on the Polymorph Composition of CaCO3 Precipitated from Carbonized Aqueous Solutions. Journal of Colloid and Interface Science, 281, 377-388.
http://dx.doi.org/10.1016/j.jcis.2004.08.099

[15]   Cuneyttas, A. (2015) Aragonite Coating Solutions (ACS) Based on Artificial Seawater. Applied Surface Science, 330, 262-269.
http://dx.doi.org/10.1016/j.apsusc.2014.12.195

[16]   Azizur Rahman, M., Halfar, J. and Shinjo, R. (2013) X-Ray Diffraction Is a Promising Tool to Characterize Coral Skeletons. Materials Physics and Chemistry, 3, 120-125.
http://dx.doi.org/10.4236/ampc.2013.31A015

[17]   Wray, J.L. and Danniels, F. (1957) Precipitation of Calcite and Aragonite. Journal of the American Chemical Society, 79, 2031-2034.
http://dx.doi.org/10.1021/ja01566a001

[18]   Wang, L.F., Sondi, I. and Matijevic, E. (1999) Preparation of Uniform Needle-Like Aragonite Particles by Homogeneous Precipitation. Journal of Colloid Interface Science, 218, 545-553.
http://dx.doi.org/10.1006/jcis.1999.6463

 
 
Top