Group Inverse of 2 × 2 Block Matrices over Minkowski Space M

Show more

References

[1] Zhuang, W. (1987) Involutory Functions and Generalized Inverses of Matrices over an Arbitrary Skew Fields. Northeast Math, 1, 57-65.

[2] Golub, G.H. and Greif, C. (2003) On Solving Blocked-Structured Indefinite Linear Systems. SIAM Journal on Scientific Computing, 24, 2076-2092.

[3] Ipsen, I.C.F. (2001) A Note on Preconditioning Nonsymmetric Matrices. SIAM Journal on Scientific Computing, 23, 1050-1051.

[4] Campbell, S.L. and Meyer, C.D. (2013) Generalized Inverses of Linear Transformations. Dover, New York.

[5] Bu, C. (2002) On Group Inverses of Block Matrices over Skew Fields. Journal of Mathematics, 35, 49-52.

[6] Bu, C., Zhao, J. and Zheng, J. (2008) Group inverse for a Class 2 × 2 Block Matrices over Skew Fields. Computers & Mathematics with Applications, 204, 45-49.

http://dx.doi.org/10.1016/j.amc.2008.05.145

[7] Cao, C. (2001) Some Results of Group Inverses for Partitioned Matrices over Skew Fields. Heilongjiang Daxue Ziran Kexue Xuebao, 18, 5-7.

[8] Cao, C. and Tang, X. (2006) Representations of the Group Inverse of Some 2 × 2 Block Matrices. International Mathematical Forum, 31, 1511-1517.

http://dx.doi.org/10.12988/imf.2006.06127

[9] Chen, X. and Hartwig, R.E. (1996) The Group Inverse of a Triangular Matrix. Linear Algebra and Its Applications, 237/238, 97-108.

http://dx.doi.org/10.1016/0024-3795(95)00561-7

[10] Catral, M., Olesky, D.D. and van den Driessche, P. (2008) Group Inverses of Matrices with Path Graphs. The Electronic Journal of Linear Algebra, 1, 219-233.

http://dx.doi.org/10.13001/1081-3810.1260

[11] Cao, C. (2006) Representation of the Group Inverse of Some 2 × 2 Block Matrices. International Mathematical Forum, 31, 1511-1517.

[12] Krishnaswamy, D. and Punithavalli, G. (2013) The Anti-Reflexive Solutions of the Matrix Equation A × B=C in Minkowski Space M. International Journal of Research and Reviews in Applied Sciences, 15, 2-9.

[13] Krishnaswamy, D. and Punithavalli, G. (2013) The Re-nnd Definite Solutions of the Matrix Equation A × B=C in Minkowski Space M. International Journal of Fuzzy Mathematical Archive, 2, 70-77.

[14] Krishnaswamy, D. and Punithavalli, G. Positive Semidefinite (and Definite) M-Symmetric Matrices Using Schur Complement in Minkowski Space M. (Preprint)