AJCM  Vol.1 No.3 , September 2011
Quasi-Reversibility Regularization Method for Solving a Backward Heat Conduction Problem
Abstract: Non-standard backward heat conduction problem is ill-posed in the sense that the solution(if it exists) does not depend continuously on the data. In this paper, we propose a regularization strategy-quasi-reversibility method to analysis the stability of the problem. Meanwhile, we investigate the roles of regularization parameter in this method. Numerical result show that our algorithm is effective and stable.
Cite this paper: nullA. Qian and J. Mao, "Quasi-Reversibility Regularization Method for Solving a Backward Heat Conduction Problem," American Journal of Computational Mathematics, Vol. 1 No. 3, 2011, pp. 159-162. doi: 10.4236/ajcm.2011.13018.

[1]   R. Latter and J. L. Lions, “Methode de Quasi-Reversibility et Applications,” Dunod, Paris,1967.

[2]   R. E. Showalter, “The Final Value Problem for Evolution Equations,” Journal of Mathematical Analysis and Applications, Vol. 47, 1974, pp. 563-572. doi:10.1016/0022-247X(74)90008-0

[3]   K. A. Ames, W. C. Gordon, J. F. Epperson and S. F. Oppenhermer, “A Compari-son of Regularizations for an Ill-Posed Problem,” Mathematics of Computation, Vol. 67, No. 224, 1998, pp. 1451-1471. doi:10.1090/S0025-5718-98-01014-X

[4]   K. Miller, “Stabi-lized Quasireversibility and Other Nearly Best Possible Methods for Non-Well-Posed Problems,” Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Vol. 316, 1973, pp. 161-176.

[5]   T. Schr?ter and U. Tautenhahn, “On Optimal Regularization Methods for the Backward Heat Equation,” Zeitschrift für Analysis und ihre Anwendungen, Vol. 15, 1996, pp. 475-493.

[6]   N. S. Mera, L. Elliott, D. B. Ingham and D. Lesnic, “An Iterative Boundary Element Method for Solving the One Dimensional Backward Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 44, 2001, pp. 1946-1973.

[7]   M. Jourhmane and N. S. Mera, “An Iterative Algorithm for the Backward Heat Conduction Problem Based on Variable Relaxtion Factors,” Inverse Problems in Engineering, Vol. 10, No. 4, 2002, pp. 293-308. doi:10.1080/10682760290004320

[8]   N. S. Mera, “The Method of Fundamental Solutions for the Backward Heat Conduction Problem,” Inverse Problems in Engineering, Vol. 13, No. 1, 2005, pp. 79-98. doi:10.1080/10682760410001710141

[9]   D. N. Ha?, “A Mollification Method for Ill-Posed Problems,” Numerische Mathematik, Vol. 68, No. 4, 1994, pp. 469-506. doi:10.1007/s002110050073

[10]   S. M. Kirkup and M. Wadsworth, “Solution of Inverse Diffusion Problems by Operator-Splitting Methods,” Applied Mathematical Modelling, Vol. 26, No. 10, 2002, pp. 1003-1018. doi:10.1016/S0307-904X(02)00053-7

[11]   C. L. Fu, X. T. Xiong and Z. Qian, “Fourier Regularization for a Backward Heat Equation,” Journal of Mathematical Analysis and Appli-cations, Vol. 33, No. 1, 2007, pp. 472-481. doi:10.1016/j.jmaa.2006.08.040

[12]   L. Elden, “Numerical Solutiono of the Sideways Heat Equation by Diference Approximation in Time,” Inverse Problems, Vol. 201, No. 11, 1995, pp. 913-923. doi:10.1088/0266-5611/11/4/017

[13]   H. Han, D. B. Ingham and Y. Yuan, “The Boundary Element Method for the Solution of the Backward Heat Conduction Equation,” Journal of Com-putational Physics, Vol. 116, No. 2, 1995, pp. 92-99. doi:10.1006/jcph.1995.1028

[14]   M. Jourhmane and N. S. Mera, “An Iterative Algorithm for the Backward Heat Conduc-tion Problem Based on Variable Relaxtion Factors,” Inverse Problems in Engneering, Vol. 10, No. 2, 2002, pp. 93-308.

[15]   R. E. Ewing, “The Approximation of Cetain Parabolic Equations Backward in Time by Sobolev Equations,” SIAM Journal on Mathematical Analysis, Vol. 6, 1975, pp. 283-294. doi:10.1137/0506029

[16]   D. N. Hào and P. M. Hien, “Stability Results for the Cauchy Problem for the Laplace Equation in a Strip,” Inverse Problems, Vol. 19, No. 4, 2003, pp. 833-844.

[17]   D. N. Hào and D. Lesnic, “The Cauchy for Laplace’s Equation via the Conjugate Gradient Method,” IMA Journal of Applied Mathematics, Vol. 65, 2000, pp. 199- 217. doi:10.1093/imamat/65.2.199

[18]   Y. C. Hon and T. Wei, “Backus-Gilbert Algorithm for the Cauchy Problem of Laplace Equation,” Inverse Problems, Vol. 17, 2001, pp. 261-271. doi:10.1088/0266-5611/17/2/306

[19]   M. V. Klibanov and F. Santosa, “A Computational Quasi- Reversibility Method for Cauchy Problems for Laplace’s Equation,” SIAM Journal on Mathematical Analysis, Vol. 51, No. 6, 1991, pp. 1653-1675. doi:10.1137/0151085

[20]   J. R. Cannon, “The One-Dimensional Heat Equation,” Addison-Wesley Publishing Company, Menlo Park, 1984.

[21]   L. C. Evans, “Partial Differ-ential Equations,” American Mathematical Society, Providence, 1998.