Computing the Moore-Penrose Inverse of a Matrix Through Symmetric Rank-One Updates

References

[1] X. Chen, “The Generalized Inverses of Perturbed Matrices,” International Journal of Computer Mathematics, Vol. 41, No. 3-4, 1992, pp. 223-236.

[2] T. N. E. Greville, “Some Applications of Pseudoinverse of a Matrix,” SIAM Review, Vol. 2, No. 1, 1960, pp. 15-22. doi:10.1137/1002004

[3] S. R. Vat-sya and C. C. Tai, “Inverse of a Perturbed Matrix,” International Journal of Computer Mathematics, Vol. 23, No. 2, 1988, pp. 177-184.
doi:10.1080/00207168808803616

[4] Y. Wei, “Expression for the Drazin Inverse of a 2 × 2 Block Matrix,” Linear and Multilinear Algebra, Vol. 45, 1998, pp. 131-146. doi:10.1080/03081089808818583

[5] S. L. Campbell and C. D. Meyer, “Generalized Inverses of Linear Transformations,” Pitman, London, 1979.

[6] G. R. Wang, Y. Wei and S. Qiao, “Generalized Inverses: Theory and Computations,” Science Press, Beijing/New York, 2004.