Back
 JAMP  Vol.4 No.10 , October 2016
The Pfaffian Technique: A (2 + 1)-Dimensional Korteweg de Vries Equation
Abstract: The (2 + 1)-dimensional Korteweg de Vries (KdV) equation, which was first derived by Boiti et al., has been studied by various distinct methods. It is known that this (2 + 1)-dimensional KdV equation has rich solutions, such as multi-soliton solutions and dromion solutions. In the present article, a unified representation of its N-soliton solution is given by means of pfaffian. We’ll show that this (2 + 1)-dimensional KdV equation is nothing but the Plücker identity when its τ-function is given by pfaffian.
Cite this paper: Zhai, L. and Zhao, J. (2016) The Pfaffian Technique: A (2 + 1)-Dimensional Korteweg de Vries Equation. Journal of Applied Mathematics and Physics, 4, 1930-1935. doi: 10.4236/jamp.2016.410195.
References

[1]   Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H. (1974) The Inverse Scattering Transform—Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics, 53, 249-315.
http://dx.doi.org/10.1002/sapm1974534249

[2]   Hirota, R. and Satsuma, J. (1976) N-Soliton Solutions of Model Equations for Shallow Water Waves. Journal of the Physical Society of Japan, 40, 611-612.
http://dx.doi.org/10.1143/JPSJ.40.611

[3]   Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511543043

[4]   Hirota, R. (1971) Exact Solutions of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Physical Review Letters, 27, 1192-1194.
http://dx.doi.org/10.1103/PhysRevLett.27.1192

[5]   Hereman, W. and Zhuang, W. (1992) Symbolic Computation of Solitons with Macsyma. Comput. Appl. Math. II: Diff. Eq., 2, 287-296.

[6]   Sawada, K. and Kotera, T. (1974) A Method for Finding N-Soliton Solutions of the KdV Equation and KdV-Like Equation. Progress of Theoretical Physics, 51, 1355-1367.
http://dx.doi.org/10.1143/PTP.51.1355

[7]   Matsuno, Y. (1984) Bilinear Transformation Method. Academic Press, New York.

[8]   Olver, P.J. (1986) Application of Lie Group to Differential Equation. Springer, New York.
http://dx.doi.org/10.1007/978-1-4684-0274-2

[9]   Matveev, V.B. and Salle, M.A. (1991) Darboux Transformations and Solitons. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-00922-2

[10]   Boiti, M., Leon, J., Manna, M. and Pempinelli, F. (1986) On the Spectral Transform of Korteweg-de Vries Equation in Two Spatial Dimensions. Inverse Problem, 2, 271-279.
http://dx.doi.org/10.1088/0266-5611/2/3/005

[11]   Lou, S.Y. and Hu, X.B. (1997) Infinitely Many Lax Pairs and Symmetry Constraints of the KP Equation. Journal of Mathematical Physics, 38, 6401-6427.
http://dx.doi.org/10.1063/1.532219

[12]   Lou, S.Y. (1995) Generalized Dromion Solutions of the (2+1)-Dimensional KdV Equation. Journal of Physics A: Mathematical and General, 28, 7227-7232.
http://dx.doi.org/10.1088/0305-4470/28/24/019

[13]   Lou, S.Y. and Ruan, H.Y. (2001) Revisitation of the Localized Excitations of the 2+1 Dimensional KdV Equarion. Journal of Physics A: Mathematical and General, 35, 305-316.
http://dx.doi.org/10.1088/0305-4470/34/2/307

[14]   Wazwaz, A.M. (2008) Single and Multiple-Soliton Solutions for the (2+1)-Dimensional KdV Equation. Applied Mathematics and Computation, 204, 20-26.
http://dx.doi.org/10.1016/j.amc.2008.05.126

[15]   Zhao, J.X. and Tam, H.W. (2006) Soliton Solutions of a Coupled Ramani Equation. Applied Mathematics Letters, 19, 307-313.
http://dx.doi.org/10.1016/j.aml.2005.01.006

[16]   Li, C.X. and Zeng, Y.B. (2007) Soliton Solutions to a Higher Order Ito Equation: Pfaffian Technique. Physics Letters A, 363, 1-4. http://dx.doi.org/10.1016/j.physleta.2006.10.080

[17]   Hirota, R., Hu, X.B. and Tang, X.Y. (2003) A Vector Potential KdV Equation and Ito Equation: Soliton Solutions, Bilinear Bäcklund Transformations and Lax Pairs. Journal of Mathematical Analysis and Applications, 288, 326-348.
http://dx.doi.org/10.1016/j.jmaa.2003.08.046

 
 
Top