Back
 JAMP  Vol.4 No.10 , October 2016
Solving of Klein-Gordon by Two Methods of Numerical Analysis
Abstract: In this paper, the Decomposion Laplace-Adomian method and He-Laplace method are used to construct the solution of Klein-Gordon equation.
Cite this paper: Yindoula, J. , Massamba, A. and Bissanga, G. (2016) Solving of Klein-Gordon by Two Methods of Numerical Analysis. Journal of Applied Mathematics and Physics, 4, 1916-1929. doi: 10.4236/jamp.2016.410194.
References

[1]   Behe, H.A. (2002) Modern Quantum Theory. 4th Edition, Freeman and Co., San Francisco.

[2]   Fadaei, J. (2011) Application of Laplace-Adomian Decomposition Method on Linear and Nonlinear System of PDEs. Applied Mathematical Sciences, 5, 1307-1315.

[3]   Abbaoui, K. (1995) Les fondements de la méthode décompositionnelle d'Adomian et application à la résolution de problèmes issus de la biologie et de la médécine. Thèse de doctorat de l’Université Paris VI.

[4]   Abbaoui, K. and Cherruault, Y. (1994) Convergence of Adomian Method Applied to Differential Equations. Mathematical and Computer Modellings, 28, 103-109.

[5]   Abbaoui, K. and Cherruault, Y. (1994) Convergence of Adomian’s Method Applied to Non Linear Equations. Mathematical and Computer Modelling, 20, 60-73.

[6]   Abbaoui, K. and Cherruault, Y. (1999) The Decomposition Method Applied to the Cauchy Problem. Kybernetes, 28, 68-74.
http://dx.doi.org/10.1108/03684929910253261

[7]   He, J.H. (2005) Application of Homotopy Perturbation Method to Nonlinear Wave Equation. Chaos, Solitons, Fractals, 26, 295-300. http://dx.doi.org/10.1016/j.chaos.2005.03.006

 
 
Top