JMP  Vol.2 No.9 , September 2011
Properties of Phase Transformation of Ferroelectric Thin Films with Surface Layers
ABSTRACT
Using the generalized Ginzburg-Landau-Devonshire theory, the characteristics of phase transformation of a ferroelectric thin film with surface layers are investigated. We study the effect of the surface layer on the properties (coercive field, critical thickness) of a ferroelectric thin film. Our theoretical results show that the surface layer is likely to answer for the emergence of phase transformation.

Cite this paper
nullL. Cui, X. Xu, J. Che, Z. He, H. Xue and T. Lv, "Properties of Phase Transformation of Ferroelectric Thin Films with Surface Layers," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1037-1040. doi: 10.4236/jmp.2011.29125.
References
[1]   N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon,H. Kohlstedt, N. Y. Park, G. B. Ste-phenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada and S. Streiffer, “Ferroelectric Thin Films: Re-view of Materials, Properties, and Applications,” Journal of Applied Physics, Vol. 100, No. 5, 2006, pp. 606-651. doi:10.1063/1.2336999

[2]   J. M. Wesselinowa, “Dielectric Susceptibility of Ferroe-lectric Thin Film,” Solid State Communications, Vol. 121, No. 9-10, 2002, pp. 489-492. doi:10.1016/S0038-1098(02)00012-1

[3]   G. Catalan, L. J. Sinnamon and J. M. Gregg, “The Effect of Flexoelectricity on the Dielectric Properties of Inho-mogeneously Strained Ferroelectric Thin Film,” Journal of Physics: Condensed Matter, Vol. 16, No. 13, 2004, pp. 2253-2264. doi:10.1088/0953-8984/16/13/006

[4]   Y. Zheng, B. Wang and C. H. Woo, “Critical Thickness for Dislocation Generation during Ferroelectric Transition Thin Film on A Compliant Substrate ,” Applied Physics Letters, Vol. 89, No. 8, 2006, pp. 115-117. doi:10.1063/1.2338515

[5]   K.-H. Chew, C. L. Wang, F. G. Shin, H. L. W. Chan and D. R. Tilley, “Theory of Phase Transitions in Second-Order Ferroelectric Films: Effects of Surfaces and Surface-Induced Stresses on Polarization,” Solid State Communications, Vol. 123, No. 10, 2002, pp. 457-462. doi:10.1016/S0038-1098(02)00253-3

[6]   Y. I. Yuzyuk, R. S. Katiyar, V. A. Alyoshin, I. N. Zak-harchenko, D. A. Markov and E. V. Sviridov, “Stress Relaxation in Heteroepitaxial (Ba,Sr)TiO3/(001) MgO Thin Film Studied by Micro-Raman Spectroscopy,” Physical Review B, Vol. 68, No. 10, 2003, pp. 104-107. doi:10.1103/PhysRevB.68.104104

[7]   Y. I. Yuzyuk, J. L. Sauvajol, P. Simon, V. L. Lorman, V. A. Alyoshin, I. N. Zakharchenko and E. V. Sviridov, “Phase Transitions in (Ba0.7Sr0.3)TiO3/(001) MgO Thin Film Studied by Raman Scattering,” Journal of Applied Physics, Vol. 93, No. 12, 2003, pp. 9930-9937. doi:10.1063/1.1574173

[8]   K. Kato, K. Tanaka, K. Suzuki and S. Kayukawa, “Phase Transition in Bottom-up BaTiO3 Films on Si,” Applied Physics Letters, Vol. 91, No. 17, 2007, pp. 907-909. doi:10.1063/1.2794411

[9]   C. Basceri, S. K. Streiffer, A. I. Kingon and R. Waser, “The Dielectric Response as a Function of Temperature and Film Thickness of Fiber-Textured (Ba,Sr)TiO3 Thin Films Grown by Chemical Vapor Deposition,” Journal of Applied Physics, Vol. 82, No. 5, 1997, pp. 2497-2504. doi:10.1063/1.366062

[10]   L.-H. Ong, J. Osman and D. R. Tilley, “Landau Theory of Second-Order Phase Transitions in Ferroelectric Films,” Physical Review B, Vol. 63, No. 14, 2001, pp. 109-118. doi:10.1103/PhysRevB.63.144109

[11]   B. Wang and C. H. Woo, “Curie Temperature and Critical Thickness of Ferroelectric Thin Films,” Journal of Applied Physics, Vol. 97, No. 8, 2005, pp. 109-118. doi:10.1063/1.1861517

[12]   J. Paul, T. Nishimatsu, Y. Kawazoe and U. V. Waghmare, “A First-Principles Study of Phase Transitions in Ultrathin Films of BaTiO3,”Journal of Physics, Vol. 70, No. 2, 2008, pp. 263-270.

[13]   T. Lv and W. Cao, “Generalized Continuum Theory for Ferroelectric Thin Films,” Physical Review B, Vol. 66, No. 2, 2002, pp. 102-104.

[14]   R. Kretschmer and K. Binder, “Surface Effects on Phase Transitions in Ferroelectrics and Dipolar Magnets,” Physical Review B, Vol. 20, No. 3, 1979, pp. 1065-1076. doi:10.1103/PhysRevB.20.1065

[15]   A. M. Musleh, L.-H. Ong and D. R. Tilley, “Effects of Extrapolation Length Δ on Switching Time and Coercive Field,” Journal of Applied Physics, Vol. 105, No. 6, 2009, pp. 602-607. doi:10.1063/1.3081964

 
 
Top