JMP  Vol.2 No.9 , September 2011
Properties of Phase Transformation of Ferroelectric Thin Films with Surface Layers
Abstract: Using the generalized Ginzburg-Landau-Devonshire theory, the characteristics of phase transformation of a ferroelectric thin film with surface layers are investigated. We study the effect of the surface layer on the properties (coercive field, critical thickness) of a ferroelectric thin film. Our theoretical results show that the surface layer is likely to answer for the emergence of phase transformation.
Cite this paper: nullL. Cui, X. Xu, J. Che, Z. He, H. Xue and T. Lv, "Properties of Phase Transformation of Ferroelectric Thin Films with Surface Layers," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1037-1040. doi: 10.4236/jmp.2011.29125.

[1]   N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon,H. Kohlstedt, N. Y. Park, G. B. Ste-phenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada and S. Streiffer, “Ferroelectric Thin Films: Re-view of Materials, Properties, and Applications,” Journal of Applied Physics, Vol. 100, No. 5, 2006, pp. 606-651. doi:10.1063/1.2336999

[2]   J. M. Wesselinowa, “Dielectric Susceptibility of Ferroe-lectric Thin Film,” Solid State Communications, Vol. 121, No. 9-10, 2002, pp. 489-492. doi:10.1016/S0038-1098(02)00012-1

[3]   G. Catalan, L. J. Sinnamon and J. M. Gregg, “The Effect of Flexoelectricity on the Dielectric Properties of Inho-mogeneously Strained Ferroelectric Thin Film,” Journal of Physics: Condensed Matter, Vol. 16, No. 13, 2004, pp. 2253-2264. doi:10.1088/0953-8984/16/13/006

[4]   Y. Zheng, B. Wang and C. H. Woo, “Critical Thickness for Dislocation Generation during Ferroelectric Transition Thin Film on A Compliant Substrate ,” Applied Physics Letters, Vol. 89, No. 8, 2006, pp. 115-117. doi:10.1063/1.2338515

[5]   K.-H. Chew, C. L. Wang, F. G. Shin, H. L. W. Chan and D. R. Tilley, “Theory of Phase Transitions in Second-Order Ferroelectric Films: Effects of Surfaces and Surface-Induced Stresses on Polarization,” Solid State Communications, Vol. 123, No. 10, 2002, pp. 457-462. doi:10.1016/S0038-1098(02)00253-3

[6]   Y. I. Yuzyuk, R. S. Katiyar, V. A. Alyoshin, I. N. Zak-harchenko, D. A. Markov and E. V. Sviridov, “Stress Relaxation in Heteroepitaxial (Ba,Sr)TiO3/(001) MgO Thin Film Studied by Micro-Raman Spectroscopy,” Physical Review B, Vol. 68, No. 10, 2003, pp. 104-107. doi:10.1103/PhysRevB.68.104104

[7]   Y. I. Yuzyuk, J. L. Sauvajol, P. Simon, V. L. Lorman, V. A. Alyoshin, I. N. Zakharchenko and E. V. Sviridov, “Phase Transitions in (Ba0.7Sr0.3)TiO3/(001) MgO Thin Film Studied by Raman Scattering,” Journal of Applied Physics, Vol. 93, No. 12, 2003, pp. 9930-9937. doi:10.1063/1.1574173

[8]   K. Kato, K. Tanaka, K. Suzuki and S. Kayukawa, “Phase Transition in Bottom-up BaTiO3 Films on Si,” Applied Physics Letters, Vol. 91, No. 17, 2007, pp. 907-909. doi:10.1063/1.2794411

[9]   C. Basceri, S. K. Streiffer, A. I. Kingon and R. Waser, “The Dielectric Response as a Function of Temperature and Film Thickness of Fiber-Textured (Ba,Sr)TiO3 Thin Films Grown by Chemical Vapor Deposition,” Journal of Applied Physics, Vol. 82, No. 5, 1997, pp. 2497-2504. doi:10.1063/1.366062

[10]   L.-H. Ong, J. Osman and D. R. Tilley, “Landau Theory of Second-Order Phase Transitions in Ferroelectric Films,” Physical Review B, Vol. 63, No. 14, 2001, pp. 109-118. doi:10.1103/PhysRevB.63.144109

[11]   B. Wang and C. H. Woo, “Curie Temperature and Critical Thickness of Ferroelectric Thin Films,” Journal of Applied Physics, Vol. 97, No. 8, 2005, pp. 109-118. doi:10.1063/1.1861517

[12]   J. Paul, T. Nishimatsu, Y. Kawazoe and U. V. Waghmare, “A First-Principles Study of Phase Transitions in Ultrathin Films of BaTiO3,”Journal of Physics, Vol. 70, No. 2, 2008, pp. 263-270.

[13]   T. Lv and W. Cao, “Generalized Continuum Theory for Ferroelectric Thin Films,” Physical Review B, Vol. 66, No. 2, 2002, pp. 102-104.

[14]   R. Kretschmer and K. Binder, “Surface Effects on Phase Transitions in Ferroelectrics and Dipolar Magnets,” Physical Review B, Vol. 20, No. 3, 1979, pp. 1065-1076. doi:10.1103/PhysRevB.20.1065

[15]   A. M. Musleh, L.-H. Ong and D. R. Tilley, “Effects of Extrapolation Length Δ on Switching Time and Coercive Field,” Journal of Applied Physics, Vol. 105, No. 6, 2009, pp. 602-607. doi:10.1063/1.3081964