[1] J. H. He, “An Elementary Introduction to Recently Developed Asymptotic Methods and Nanomechanics In Textile Engineering,” International Journal of Modern Physics B, Vol. 22, No. 21, 2008, pp. 3487-3578. doi:10.1142/S0217979208048668
[2] F. M. Fernandez and R. H. Tipping, “Accurate Calculation of Vibrational Resonances by Perturbation Theory,” Journal of Molecular Structure (Theochem), Vol. 488, No. 1-3, 1999, pp. 157-161. doi:10.1016/S0166-1280(98)00622-8
[3] F. J. Gomez and J. Sesma, “Bound States and “Resonances” in Quantum Anharmonic Oscillators,” Physics Letters A, Vol. 270, No. 1-2, 2000, pp. 20-26. doi:10.1016/S0375-9601(00)00290-5
[4] A. Pathak and S. Mandal, “Classical and Quantum Oscillators of Quartic Anharmonicities: Second-Order Solution,” Physics Letters A, Vol. 286, No. 4, 2001, pp. 261-276. doi:10.1016/S0375-9601(01)00401-7
[5] A. Pathak and S. Mandal, “Classical and Quantum Oscillators of Sextic and Octic Anharmonicities,” Physics Letters A, Vol. 298, No. 4, 2002, pp. 259-270. doi:10.1016/S0375-9601(02)00500-5
[6] Y. Meurice, “Arbitrarily Accurate Eigenvalues for One-Dimensional Polynomial Potentials,” Journal of Physics A: Mathematical and General, Vol. 35, No. 41, 2002, pp. 8831-8846. doi:10.1088/0305-4470/35/41/314
[7] I. A. Ivanov, “Transformation of the Asymptotic Perturbation Expansion for the Anharmonic Oscillator into a Convergent Expansion,” Physics Letters A, Vol. 322, No. 3-4, 2004, pp. 194-204. doi:10.1016/j.physleta.2004.01.014
[8] H. K. Khalil, “Nonlinear Systems,” Maxwell Macmillan, Toronto, 1992.
[9] J. H. He, “Some new Approaches to Duffing Equation with Strongly and High Order Nonlinearity (II) Parametrized Perturbation Technique,” Communications in Nonlinear Science and Numerical Simulation, Vol. 4, No. 1, 1999, pp. 81-83. doi:10.1016/S1007-5704(99)90065-5
[10] J. Lin, “A New Approach to Duffing Equation with Strong and High Order Nonlinearity,” Communications in Nonlinear Science and Numerical Simulation, Vol. 4, No. 2, 1999, pp. 132-135. doi:10.1016/S1007-5704(99)90026-6
[11] J. H. He, “Variational iteration method – a Kind of Non-Linear Analytical Technique: Some Examples,” International Journal of Non-Linear Mechanics, Vol. 34, No. 4, 1999, pp. 699-708. doi:10.1016/S0020-7462(98)00048-1
[12] Y. Z. Chen, “Solution Of The Duffing Equation By Using Target Function Method,” Journal of Sound and Vibration, Vol. 256, No. 3, 2002, pp. 573-578. doi:10.1006/jsvi.2001.4221
[13] A. R. Chouikha, “Series Solutions of Some Anharmonic Motion Equations,” Journal of Mathematical Analysis and Applications, Vol. 272, No. 1, 2002, pp. 79-88. doi:10.1016/S0022-247X(02)00134-8
[14] M. El-Kady and E. M. E. Elbarbary, “A Chebyshev Expansion Method for Solving Nonlinear Optimal Control Problems,” Applied Mathematics and Computation, Vol. 129, No. 2-3, 2002, pp. 171-182. doi:10.1016/S0096-3003(01)00104-7
[15] C. W. Lim and B. S. Wu, “A New Analytical Approach to the Duffing-Harmonic Oscillator,” Physics Letters A, Vol. 311, No. 4-5, 2003, pp. 365-373. doi:10.1016/S0375-9601(03)00513-9
[16] Y. Z. Chen, “Evaluation of Motion of the Duffing Equation from Its General Properties,” Journal of Sound and Vibration, Vol. 264, No. 2, 2003, pp. 491-497. doi:10.1016/S0022-460X(02)01495-5
[17] H. R. Marzban and M. Razzaghi, “Numerical Solution of the Controlled Duffing Oscillator by Hybrid Functions,” Applied Mathematics and Computation, Vol. 140, No. 2-3, 2003, pp. 179-190. doi:10.1016/S0096-3003(02)00112-1
[18] T. Opatrny and K. K. Das, “Conditions for Vanishing Central-Well Population in Triple-Well Adiabatic Transport,” Physics Letters A, Vol. 79, No. 1, 2009, p. 02113.
[19] V. B. Mandelzweig and F. Tabakin, “Quasilinearization Approach to Nonlinear Problems in Physics with Application to Nonlinear ODEs,” Computer Physics Communications, Vol. 141, No. 2, 2001, pp. 268-281. doi:10.1016/S0010-4655(01)00415-5
[20] J. I. Ramos, “Linearization methods in classical and quantum mechanics,” Computer Physics Communications, Vol. 153, No. 2, 2003, pp. 199-208. doi:10.1016/S0010-4655(03)00226-1
[21] J. L. Trueba, J. P. Baltanas and M. A. F. Sanjuan, “A generalized Perturbed Pendulum,” Chaos, Solitons & Fractals, Vol. 15, No. 5, 2003, pp. 911-924. doi:10.1016/S0960-0779(02)00210-2
[22] A. Post and W. Stuiver, “Modeling Non-Linear Oscillators: A New Approach,” International Journal of Non- Linear Mechanics, Vol. 39, No. 6, 2004, pp. 897-908. doi:10.1016/S0020-7462(03)00073-8
[23] A. Pelster, H. Kleinert and M. Schanz, “High-Order Variational Calculation for the Frequency of Time-Periodic Solutions,” Physical Review E, Vol. 67, No. 1, 2003, p. 016604. doi:10.1103/PhysRevE.67.016604
[24] C. M. Bender and T. T. Wu, “Analytic Structure of Energy Levels in a Field-Theory Model,” Physical Review Letters, Vol. 21, No. 6, 1968, pp. 406-409. doi:10.1103/PhysRevLett.21.406
[25] C. M. Bender and T. T. Wu, “Anharmonic Oscillator,” Physical Review, Vol. 184, No. 5, 1969, 1231-1260. doi:10.1103/PhysRev.184.1231
[26] J. J. Stoker, “Nonlinear Vibrations,” Interscience, New York, 1950.
[27] N. Minorsky, “Nonlinear Oscillation,” Van Nostrand, Princeton, 1962.
[28] A. H. Nayfeh, “Introduction to Perturbation Techniques,” John Wiley, New York, 1981.
[29] J. H. He, “Modified Lindstedt–Poincare methods for some strongly non-linear oscillations: Part I: expansion of a constant,” International Journal of Non-Linear Mechanics, Vol. 37, No. 2, 2002, pp. 309-314. doi:10.1016/S0020-7462(00)00116-5
[30] J. H. He, “Modified Lindstedt–Poincare Methods for Some Strongly Non-Linear Oscillations: Part II: A New Transformation,” International Journal of Non-Linear Mechanics, Vol. 37, No. 2, 2002, pp. 315-320. doi:10.1016/S0020-7462(00)00117-7
[31] P. Amore and A. Aranda, “Presenting a New Method for the Solution of Nonlinear Problems,” Physics Letters A, Vol. 316, No. 3-4, 2003, pp. 218-225. doi:10.1016/j.physleta.2003.08.001
[32] L. S. Gradshteyn and L. M. Rhyzik, “Table of Integrals, Series and Products,” Academic Press, New York, 1980.