Back
 OJCM  Vol.6 No.4 , October 2016
An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar
Abstract: This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise between setting time and mechanical strengths of the AAB. With this sodium hydroxide concentration, the compressive and the 3-point bending tensile strength of the hardened AAB were 53.4 and 5.5 MPa respectively after 14 days. As a result of the investigation of the acid resistance, the AAB-matrix showed a very high acid resistance in comparison to ordinary Portland cement concrete. In addition, the AAB had a high frost resistance, which had been validated by the capillary suction, internal damage and freeze thaw test with a relative dynamic E-Modulus of 93% and a total amount of scaled material of 30 g/m2 after 28 freeze-thaw cycles (exposure class: XF3).
Cite this paper: Funke, H. , Gelbrich, S. and Kroll, L. (2016) An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar. Open Journal of Composite Materials, 6, 132-142. doi: 10.4236/ojcm.2016.64013.
References

[1]   Purnell, P. (2011) Material Nature versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements. Environmental Science & Technology, 46, 454-461.

http://dx.doi.org/10.1021/es202190r

[2]   IEA (2009) Cement Technology Roadmap 2009. Carbon Emissions Reductions up to 2050.

[3]   McLellan, B.C., Williams, R.P., Lay, J., van Riessen, A. and Corder, G.D. (2011) Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement. Journal of Cleaner Production, 19, 1080-1090.

http://dx.doi.org/10.1016/j.jclepro.2011.02.010

[4]   Davidovits, J. (1993) Geopolymer Cements to Minimise Carbon Dioxide Greenhouse Warming. Ceramic Transactions, 37, 165-182.

[5]   Komnitas, K. and Zaharaki, D. (2007) Geopolymerisation: A Review and Prospects for the Minerals Industry. Minerals Engineering, 20, 1261-1277.

http://dx.doi.org/10.1016/j.mineng.2007.07.011

[6]   Shi, C., Jimenez, A. and Palomo, A. (2011) New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement. Cement and Concrete Research, 41, 750-763.

http://dx.doi.org/10.1016/j.cemconres.2011.03.016

[7]   Bernal, S.A., et al. (2014) MgO Content of Slag Controls Phase Evolution and Structural Changes Induced by Accelerated Carbonation in Alkali-Activated Binders. Cement and Concrete Research, 57, 33-43.

http://dx.doi.org/10.1016/j.cemconres.2013.12.003

[8]   Funke, H. and Gelbrich, S. (2015) Alkalisch aktivierte Bindemittel zur Generierung von faserverst?rkten Vergussmassen. 19. Ibausil, Weimar, 16-18 September 2015, Band 1, 859- 866.

[9]   Murmu, M. and Singh, A. (2014) Hydration Products, Morphology and Microstructure of Activated Slag Cement. International Journal of Concrete Structures and Material, 8, 61-68.

[10]   Kar, A., Ray, I., Halabe, U.B., Unnikrishnan, A. and Dawson-Andoh, B. (2014) Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures. International Journal of Concrete Structures and Materials, 8, 213-228.

http://dx.doi.org/10.1007/s40069-014-0069-0

[11]   Provis, J.L. (2014) Geopolymers and Other Alkali Activated Materials: Why, How, and What? Materials and Structures, 47, 11-25.

http://dx.doi.org/10.1617/s11527-013-0211-5

[12]   Vance, K., Aguayo, M., Dakhane, A., Ravikumar, D., Jain, J. and Neithalath, N. (2014) Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders. International Journal of Concrete Structures and Materials, 8, 289-299.

http://dx.doi.org/10.1007/s40069-014-0082-3

[13]   Sakulich, A.R. (2011) Reinforced Geopolymer Composites for Enhanced Material Greenness and Durability. Sustainable Cities and Society, 1, 195-210.

http://dx.doi.org/10.1016/j.scs.2011.07.009

[14]   Pacheco-Torgal, F., Castro-Gomes, J. and Jalali, S. (2008) Alkali-Activated Binders: A Review Part 1. Historical Background, Terminology, Reaction Mechanisms and Hydration Products. Construction and Building Materials, 22, 1305-1314. http://dx.doi.org/10.1016/j.conbuildmat.2007.10.015

[15]   Hossain, M., Karim, M.R., Hossain, M.K., Islam, M.N. and Zain, M.F.M. (2015) Durability of Mortar and Concrete Containing Alkali-Activated Binder with Pozzolans: A Review. Construction and Building Materials, 93, 95-109.

http://dx.doi.org/10.1016/j.conbuildmat.2015.05.094

[16]   Bondar, D., Lynsdale, C.J., Milestone, N.B. and Hassani, N. (2015) Sulfate Resistance of Alkali Activated Pozzolans. International Journal of Concrete Structures and Materials, 9, 145-158.

http://dx.doi.org/10.1007/s40069-014-0093-0

[17]   Pacheco-Torgal, F. and Jalali, S. (2011) Resistance to Acid Attack, Abrasion and Leaching Behavior of Alkali-Activated Mine Waste Binders. Materials and Structures, 44, 487-498.

http://dx.doi.org/10.1617/s11527-010-9643-3

[18]   Deb, P., Nath, P. and Sarker, P. (2014) The Effects of Ground Granulated Blast-Furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature. Materials and Design, 62, 32- 39.

http://dx.doi.org/10.1016/j.matdes.2014.05.001

[19]   Ismai, I., Bernal, S.A., Provis, J.L., Hamdan, S. and van Deventer, J.S.J. (2011) Microstructural Changes in Alkali Activated Fly Ash/Slag Geopolymers with Sulfate Exposure. Materials and Structures, 46, 361-373.

http://dx.doi.org/10.1617/s11527-012-9906-2

[20]   Ismail, I., et al. (2013) Influence of Fly Ash on the Water and Chloride Permeability of Alkaliactivated Slag Mortars and Concretes. Construction and Building Materials, 48, 1187- 1201.

http://dx.doi.org/10.1016/j.conbuildmat.2013.07.106

[21]   Yang, T., Yao, X. and Zhang, Z. (2014) Quantification of Chloride Diffusion in Fly Ash- Slag-Based Geopolymers by X-Ray Fluorescence (XRF). Construction and Building Materials, 69, 109-115.

http://dx.doi.org/10.1016/j.conbuildmat.2014.07.031

[22]   Weil, M., Dombrowski-Daube, K. and Buchwald, A. (2011) Geopolymer Binders—Part 3: Ecological and Economic Analyses of Geopolymer Concrete Mixes for External Structural Elements. ZKG International, 64, 76-87.

[23]   Malone, P., Randall, C. and Kirkpatrick, T. (1985) Potential Applications of Alkali-Acti- vated Alumino-Silicate Binders in Military Operations. US Army Corps of Engineers, Miscellaneous Paper.

[24]   Kani, E., Allahverdi, A. and Provis, J. (2011) Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan. Cement and Concrete Composites, 34, 25-33.

http://dx.doi.org/10.1016/j.cemconcomp.2011.07.007

[25]   Zhang, Z., Provis, J.L., Reid, A. and Wang, H. (2014) Fly Ash-Based Geopolymers: The Relationship between Composition, Pore Structure and Efflorescence. Cement and Concrete Research, 64, 30-41.

http://dx.doi.org/10.1016/j.cemconres.2014.06.004

[26]   Yao, X., Yang, T. and Zhang, Z. (2015) Compressive Strength Development and Shrinkage of Alkaliactivated Fly Ash-Slag Blends Associated with Efflorescence. Material and Structures, 49, 2907-2918.

http://dx.doi.org/10.1617/s11527-015-0694-3

[27]   Fiala, C., Mukarovsky, J. and Kynclova, M. (2008) Material Effective Structures—The Way towards Sustainable Buildings. Proceedings of the Conference on Sustainable Building SB08 Melbourne, Melbourne, 21-25 September 2008, 196-203.

[28]   Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A.F., Jamshidic, M. and Ding, Y. (2012) Durability of Alkali-Activated Binders: A Clear Advantage over Portland Cement or an Unproven Issue? Construction and Building Materials, 30, 400-405.

http://dx.doi.org/10.1016/j.conbuildmat.2011.12.017

[29]   Damtoft, J., Lukasik, J., Herfort, D., Sorrentino, D. and Gartner, E.M. (2008) Sustainable Development and Climate Change Initiatives. Cement and Concrete Research, 38, 115-127.

http://dx.doi.org/10.1016/j.cemconres.2007.09.008

[30]   Davidovits, J. (1991) Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis, 37, 1633-1656.

http://dx.doi.org/10.1007/BF01912193

[31]   Cheng, T.W. (2010) Development and Application of Geopolymer Technology: A Review. Mining and Metallurgy, 54, 141-157.

[32]   Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011) Sustainable Cement Production—Present and Future. Cement and Concrete Research, 41, 642-650.

http://dx.doi.org/10.1016/j.cemconres.2011.03.019

[33]   Duxson, P., Provis, J.L., Lukey, G.C. and van Deventer, J.S.J. (2007) The Role of Inorganic polymer Technology in the Development of Green Concrete. Cement Concrete Research, 37, 1590-1597.

http://dx.doi.org/10.1016/j.cemconres.2007.08.018

[34]   Duxson, P., Lukey, G. and van Deventer, J. (2007) The Thermal Evolution of Metakaolin Geopolymers: Part 2—Phase Stability and Structural Development. Journal of Non-Crys- talline Solids, 352, 5541-5555.

http://dx.doi.org/10.1016/j.jnoncrysol.2006.09.019

[35]   Wang, H., Li, H. and Yan, F. (2005) Synthesis and Mechanical Properties of Metakaolinite-Based Geopolymer. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 268, 1-6.

http://dx.doi.org/10.1016/j.colsurfa.2005.01.016

[36]   Li, W. and Xu, J. (2009) Mechanical Properties of Basalt Fibre Reinforced Geopolymeric Concrete under Impact Loading. Materials Science Engineering, 505, 178-186.

http://dx.doi.org/10.1016/j.msea.2008.11.063

[37]   Funke, H., Gelbrich, S., Ehrlich, A. and Kroll, L. (2014) Rheological and Mechanical Development of a Fiber-Reinforced Concrete for an Application in Civil Engineering. SOJ Materials Science & Engineering, 2, 1-4.

http://dx.doi.org/10.15226/sojmse.2014.00111

[38]   Buchwald, A. (2012) Der Einfluss des Kalziums auf die Kondensation von (Alumo-)Silika- ten in alkali-aktivierten Binder. Habilitation Thesis, Gemeinsamer Bibliotheksverbund, Erfurt.

[39]   Provis, J., Lukey, G. and Deventer, J. (2005) Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chemistry of Materials, 17, 3075- 3085.

http://dx.doi.org/10.1021/cm050230i

[40]   Bernal, S. (2011) Mechanical and Thermal Characterization of Geopolymers Based on Silicate Activated Metakaolin/Slag Blends. Journal Material Science, 46, 5477-5486.

http://dx.doi.org/10.1007/s10853-011-5490-z

 
 
Top