Back
 MSA  Vol.7 No.10 , October 2016
Development of Polycaprolactone/Poly(Vinyl Alcohol)/Clay Microparticles by Spray Drying
Abstract: In this study, nanostructured microparticles was developed with polycaprolactone (PCL), poly(vinyl alcohol) (PVAL) and nanoparticles of the commercial sodium clay NT-25® by using the spray drying technique. The systems obtained were characterized by Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic Laser Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The NMR 13C and FTIR techniques showed that both polymers were present in the microparticles and the DSC analysis revealed a small variation in the glass transition temperature of the PCL. The XRD and SEM analyses showed that the microparticles produced were amorphous and had a concave morphology. The NT-25 nanoload reduced the microparticles’ size due to the multiple interactions formed in the hybrid nanocomposite material. Therefore, it was possible to develop microparticles by using biodegradable and biocompatible polymers, with different polarities, allowing the incorporation of hydrophilic and hydrophobic materials and enabling the inclusion of otherwise incompatible materials in the same system.
Cite this paper: de B. Monteiro, M. , Rodrigues, C. , Miguez, E. and Tavares, M. (2016) Development of Polycaprolactone/Poly(Vinyl Alcohol)/Clay Microparticles by Spray Drying. Materials Sciences and Applications, 7, 575-592. doi: 10.4236/msa.2016.710048.
References

[1]   Pereira, M.R., Cruz, L., Ré, M.I. and Gutteres, S.S. (2006) Micropartículas secas contendo Fármaco Modelo Lipofílico preparadas a partir de suspensao Aquosa: Estudo de Formulacao. Acta Pharmaceutical Bonaerense, 25, 198-205.

[2]   Barbanti, S.H., Zavaglia, C.A.C. and Duek, E.A.R. (2005) Polímeros Bioreaborvíveis na Engenharia de Tecidos. Polímeros, 15, 13-21.
http://dx.doi.org/10.1590/S0104-14282005000100006

[3]   Lu, Y. and Chen, S.C. (2004) Micro and Nano-Fabrication of Biodegradable Polymers for Drug Delivery. Advances in Drug Delivery Review, 56, 1621-1633.
http://dx.doi.org/10.1016/j.addr.2004.05.002

[4]   Mishra, B., Patel, B.B. and Tiwari, S. (2010) Colloidal Nanocarriers: A Review on Formulation Technology, Types and Applications toward Targeted Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 9-24.
http://dx.doi.org/10.1016/j.nano.2009.04.008

[5]   Yoo, J.W., Doshi, N. and Mitragotri, S. (2011) Adaptive Micro and Nanoparticles: Temporal Control over Carrier Properties to Facilitate Drug Delivery. Advances in Drug Delivery Review, 63, 1247-1256.
http://dx.doi.org/10.1016/j.addr.2011.05.004

[6]   Severino, P., Santana, M.H.A., Pinho, S.C. and Souto, E.B. (2011) Polímeros sintéticos biodegradáveis: Matérias-primas e métodos de producao de micropartículas para uso em drug delivery e liberacao controlada Polímeros, 21, 286-292.
http://dx.doi.org/10.1590/S0104-14282011005000060

[7]   Giri, T.K., Choudhary, C., Ajazuddin., Alexander, A., Badwaik, H. and Tripathi, D.K. (2013) Prospects of Pharmaceuticals and Biopharmaceuticals Loaded Microparticles Prepared by Double Emulsion Technique for Controlled Delivery. Saudi Pharmaceutical Journal, 21, 125-141.
http://dx.doi.org/10.1016/j.jsps.2012.05.009

[8]   Woodruff, M.A. and Hutmacher, D.W. (2010) The Return of a Forgotten Polymer: Polycaprolactone in the 21st Century. Progress in Polymer Science, 35, 1217-1256.
http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002

[9]   Dash, T.K. and Konkimalla, B. (2012) Poly-ε-Caprolactone Based Formulations for Drug Delivery and Tissue Engineering: A Review. Journal of Controlled Release, 158, 15-33.
http://dx.doi.org/10.1016/j.jconrel.2011.09.064

[10]   Campos, A., Teodoro, K.B.R., Marconcini, J.M., Mattoso, L.H.C. and Franchetti, S.M.M. (2011) Efeito do Tratamento das Fibras nas Propriedades do Biocompósito de Amido Termoplástico/Policaprolactona/Sisal. Polímeros, 21, 217-222.
http://dx.doi.org/10.1590/S0104-14282011005000039

[11]   Sinha, V.R., Bansal, K., Kaushik, R., Kumria, R. and Trehan, A. (2004) Poly-ε-Caprolactone Microspheres and Nanospheres: An Overview. International Journal of Pharmaceuticals, 278, 1-23.

[12]   Buttini, F., Soltani, A., Colombo, P., Marriott, C. and Jones, S.A. (2008) Multilayer PVA Adsorption onto Hydrophobic Drug Substrates to Engineer Drug-Rich Microparticles. European Journal of Pharmaceutical Sciences, 33, 20-28.
http://dx.doi.org/10.1016/j.ejps.2007.09.008

[13]   Kesel, C., Lefèvre, C., Nagy, J.B. and David, C. (1999) Blends of Polycaprolactone with Polyvinylalcohol: A DSC, Optical, Microscopy and Solid State NMR Study. Polymer, 40, 1969-1978.
http://dx.doi.org/10.1016/S0032-3861(98)00253-5

[14]   Ibraheem, D., Iqbal, M., Agusti, G., Fessi, H. and Elaissari, A. (2014) Effects of Process Parameters on the Colloidal Properties of Polycaprolactone Microparticles Prepared by Double Emulsion Like Process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 79-91.
http://dx.doi.org/10.1016/j.colsurfa.2014.01.012

[15]   Yang, Y.Y., Chung, T.S. and Ng, N.P. (2001) Morphology, Drug Distribution, and in Vitro Release Profiles of Biodegradable Polymeric Microspheres Containing Protein Fabricated by Double-Emulsion Solvent Extraction/Evaporation Method. Biomaterials, 22, 231-241.
http://dx.doi.org/10.1016/S0142-9612(00)00178-2

[16]   Roa, J.P.B., Mano, V., Faustino, P.B., Felix, E.B., Silva, M.E.S.R. and Filho, J.D.S. (2010) Síntese e caracterizacao do copolímero poli(3-hidroxibutirato-co-ε-caprolactona) a partir de poli(3-hidroxibutirato) e poli(ε-caprolactona). Polímeros, 20, 221-226.
http://dx.doi.org/10.1590/S0104-14282010005000038

[17]   Bikiris, D.N. (2013) Nanocomposites of Aliphatic Polyesters: An Overview of the Effect of Different Nanofillers on Enzymatic Hydrolysis and Biodegradation of Polyesters. Polymer Degradation and Stability, 98, 1908-1928.
http://dx.doi.org/10.1016/j.polymdegradstab.2013.05.016

[18]   Aguzzi, C., Cerezo, P., Viseras, C. and Caramella, C. (2007) Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Applied Clay Science, 36, 22-36.
http://dx.doi.org/10.1016/j.clay.2006.06.015

[19]   Salihi, E.C. and Mahramanlioglu, M. (2014) Equilibrium and Kinetic Adsorption of Drugs on Bentonite: Presence of Surface Active Agents Effect. Applied Clay Science, 101, 381-389.
http://dx.doi.org/10.1016/j.clay.2014.06.015

[20]   Dornelas, C.B., Rezende, D.K., Rocha, H.V.A., Gomes, A.S, Tavares, M.I.B., Coutinho, S.S.S. and Cabral, L.M. (2008) Avaliacao de Derivados Poliméricos Intercalados em Montmorilonita Organofílica na Preparacao de Novos Materiais de Uso Farmaceutico, Polímeros, 18, 222-229.
http://dx.doi.org/10.1590/S0104-14282008000300007

[21]   Bordes, P., Pollet, E. and Avérous, L. (2009) Nano-Biocomposites: Biodegradable Polyester/Nanoclay System. Progress in Polymer Science, 34, 125-155.
http://dx.doi.org/10.1016/j.progpolymsci.2008.10.002

[22]   Sapalidis, A.A., Katsaros, F.K., Steriotis, Th.A., Kanellopoulus, N.K. (2012) Properties of Poly(Vinyl-Alcohol)—Bentonite Clay Nanocomposites Films in Relation to Polymer-Clay Interactions. Journal of Applied Polymer Science, 123, 1812-1821.
http://dx.doi.org/10.1002/app.34651

[23]   Yeun, J.H., Bang, G.S., Park, B.J., Ham, S.K. and Chang, J.H. (2006) Poly(Vinyl Alcohol) Nanocomposite Films: Thermooptical Properties, Morphology, and Gas Permeability. Journal of Applied Clay Science, 101, 591-596.
http://dx.doi.org/10.1002/app.23372

[24]   Dong, Y and Feng, S.S. (2005) Poly(D,L-Lactide-co-Glycolide)/Montmorillonite Nanoparticles for Oral Delivery of Anticancer Drugs. Biomaterials, 26, 6068-6076.
http://dx.doi.org/10.1016/j.biomaterials.2005.03.021

[25]   Dyab, A.K.F., Al-Lohedan, H.A. Essawy, H.A., Abd El-Mageed, A.I.A. and Taha, F. (2014) Fabrication of Core/Shell Hybrid Organic-Inorganic Polymer Microspheres via Pickering Emulsion Polymerization Using Laponite Nanoparticles. Journal of Saudi Chemical Society, 18, 610-617.
http://dx.doi.org/10.1016/j.jscs.2011.12.008

[26]   Imbrogno, A., Piacentini, E., Drioli, E. and Giorno, L. (2014) Preparation of Uniform Poly-Caprolactone Microparticles by Membrane Emulsification/Solvent Diffusion Process. Journal of Membrane Science, 467, 262-268.
http://dx.doi.org/10.1016/j.memsci.2014.05.037

[27]   Severino, S., Santana, M.H.A., Pinho, S.C. and Souto, E.B. (2011) Polímeros sintéticos biodegradáveis: Matérias primas e Métodos de producao de micropartículas para uso em Drug Delivery e Liberacao Controlada. Polímeros, 21, 286-282.
http://dx.doi.org/10.1590/S0104-14282011005000060

[28]   Goes, A.M., Carvalho, S., Oréfice, R.L., Avérous, L., Custódio, T.A., Pimenta, J.G., Souza, M.B., Branciforti, M.C. and Bretas, R.E.S. (2012) Viabilidade Celular de Nanofibras de Polímeros Biodegradáveis e seus Nanocompósitos com Argila Montmorilonita. Polímeros, 22, 34-40.
http://dx.doi.org/10.1590/S0104-14282012005000012

[29]   Cruz, A.C., Meireles, C.S., Ribeiro, S.D., Filho, G.R., Assuncao, R.M.N., Cerqueira, D.A., Zeni, M. and Poletto, P. (2011) Utilizacao do acetato de celulose produzido a partir da celulose extraída do caroco de manga como matriz para producao de sistemas microparticulados. Química Nova, 34, 385-389.
http://dx.doi.org/10.1590/S0100-40422011000300004

[30]   Winzenburg, G., Schmidt, M., Fuchs, S. and Kissel, T. (2004) Biodegradable Polymers and Their Potential Use in Parenteral Veterinary Drug Delivery Systems. Advanced Drug Delivery Reviews, 56, 1453-1466.
http://dx.doi.org/10.1016/j.addr.2004.02.008

[31]   Dhanaraju, M.D., Gopinath, D., Ahmed, M.R., Jayakumar, R. and Vamsadhara, C. (2006) Characterization of Polymeric Poly(ε-Caprolactone) Injectable Implant Delivery System for the Controlled Delivery of Contraceptive Steroids. Journal of Biomedical Material Research, 76A, 63-72.
http://dx.doi.org/10.1002/jbm.a.30458

[32]   Suave, J., Dall’agnol, E.C., Pezzin, A.P.T., Silva, D.A.K., Meier, M.M. and Soldi, V. (2006) Microencapsulacao: Inovacao em diferentes áreas. Health and Environment Journal, 7, 12-20.

[33]   Kemala, T., Budianto, E. and Soegiyono, B. (2012) Preparation and Characterization of Microspheres Based on Blend of Poly(Lactic Acid) and Poly(ε-Caprolactone) with Poly(Vinyl Alcohol) as Emulsifier. Arabian Journal of Chemistry, 5, 103-108.
http://dx.doi.org/10.1016/j.arabjc.2010.08.003

[34]   Monteiro, M.S.S.B., Rodrigues, C.L., Neto, R.C. and Tavares, M.I.B. (2012) The Structure of Polycaprolactone-Clay Nanocomposites Investigated by 1H NMR Relaxometry. Journal of Nanoscience and Nanotechonology, 12, 7307-7313.
http://dx.doi.org/10.1166/jnn.2012.6431

[35]   Brandolini, A.J. and Hills, D.D. (2000) NMR Spectra of Polymers and Polymer Additives. Marcel Dekker Inc., New York.

[36]   Holzgrabe, U., Wawer, I and Diehl, B. (2008) NMR Spectroscopy in Pharmaceutical Analysis. Elsevier, Germany.

[37]   Junior Canevarolo, S.V. (2007) Técnicas de Caracterizacao de Polímeros. Artliber, Sao Paulo.

[38]   Skoog, D.A., Holler, F.J. and Nieman, T.A. (2002) Princípios de Análise Instrumental. Bookman, Porto Alegre.

[39]   Dal Bosco, S.M., Jimenez, R.S., Vignado, C., Fontana, J., Geraldo, B., Figuereido, F.C.A., Mandelli, D. and Carvalho, W.A. (2006) Removal of Mn(II) and Cd(II) from Wastewaters by Natural and Modified Clays. Adsorption, 12, 133-146.
http://dx.doi.org/10.1007/s10450-006-0375-1

[40]   Huang, J.M. and Yang, S.J. (2005) Studying the Miscibility and Thermal Behavior of Polybenzoxazine/Poly(ε-Caprolactone) Blends Using DSC, DMA, and Solid State 13C NMR Spectroscopy. Polymer, 46, 8068-8078.
http://dx.doi.org/10.1016/j.polymer.2005.06.104

[41]   Pedroza, O.J.O. and Tavares, M.I.B.T. (2004) Pré-Tratamento Físico: Um Procedimento Importante para o Aumento na Resolucao Espectral em Estudos de Microestrutura de Polímeros por RMN13C em Solucao. Polímeros, 14, 265-266.
http://dx.doi.org/10.1590/S0104-14282004000400012

[42]   Spevacek, J., Brus, J., Divers, T. and Grohens, Y. (2007) Solid-State NMR Study of Biodegradable Starch/Polycaprolactone Blends. European Polymer Journal, 43, 1866-1875.
http://dx.doi.org/10.1016/j.eurpolymj.2007.02.021

[43]   Ray, S.S. and Bousmina, M. (2005) Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World. Progress in Materials Science, 50, 962-1079.
http://dx.doi.org/10.1016/j.pmatsci.2005.05.002

[44]   da Silva, N.M. and Tavares, M.I.B. (1998) Solid State NMR Study of Poly(Methyl Methacrylate)/Polyvinylpyrrolidone Blends. Polymer Bulletin, 41, 307-310.
http://dx.doi.org/10.1007/s002890050367

[45]   Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S. and Dumas. P.J. (2004) FTIR Study of Polycaprolactone Chain Organization at Interfaces. Journal of Colloids and Interface Science, 273, 381-387.
http://dx.doi.org/10.1016/j.jcis.2004.02.001

[46]   Li, R., Nie, K., Shen, X. and Wang, S. (2007) Biodegradable Polyester Hybrid Nanocomposites Containing Titanium Dioxide Network and Poly(ε-Caprolactone): Synthesis and Characterization. Materials Letters, 61, 1368-1371.
http://dx.doi.org/10.1016/j.matlet.2006.07.032

[47]   Yu, Y.H., Lin, C.Y., Yeh, M.J. and Lin, W.H. (2003) Preparation and Properties of Poly- (Vinyl Alcohol)-Clay Nanocomposite Materials. Polymer, 44, 3553-3560.
http://dx.doi.org/10.1016/S0032-3861(03)00062-4

[48]   Stulzer, H.K., Tagliari, M.P., Silva, M.A.S. and Laranjeira, M.C.M. (2007) Desenvolvimento, Avaliacao e Caracterizacao Físico Química de Micropartículas Constituídas de Aciclovir/ Quitosana Desenvolvidas pela Técnica de Spray-drying. Latin American Journal of Pharmacy, 26, 866-871.

[49]   Borsacchi, S., Geppi, M., Ricci, L., Ruggeri, G. and Veracini, C.A. (2007) Interactions at the Surface of Organophilic-Modified Laponites: A Multinuclear Solid-State NMR Study. Langmuir, 23, 3953-3960.
http://dx.doi.org/10.1021/la063040a

[50]   Li, R., Nie, K., Pang, W. and Qingren, Z. (2007) Morphology and Properties of Organic-Inorganic Hybrid Materials Involving TiO2 and Poly(ε-Caprolactone), a Biodegradable Aliphatic Polyester. Journal of Biomedical Material Research Part A, 83A, 114-122.
http://dx.doi.org/10.1002/jbm.a.31224

[51]   Guerrini, L.M., Branciforti, M.C. and Bretas, R.E.S. (2006) Eletrofiacao do Poli(álcool vinílico) Via Solucao Aquosa. Polímeros, 16, 286-293.
http://dx.doi.org/10.1590/S0104-14282006000400007

[52]   Dobry, D.E., Settell, D.M., Baumann, J.M., Ray, R.J., Graham, L.J. and Beyerinck, R.A. (2009) A Model-Based Methodology for Spray-Drying Process Development. Journal of Pharmaceutical Innovation, 4, 133-142.
http://dx.doi.org/10.1007/s12247-009-9064-4

[53]   Shu, B., Yu, W., Zhao, Y. and Liu, X. (2006) Study on Microencapsulation of Lycopene by Spray-Drying. Journal of Food Engineering, 76, 664-669.
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.062

[54]   Florido, D.M. (2013) Producao de Microesferas de Nanocompósitos de Quitosano e Argila para Libertacao Controlada de Fármacos Dissertacao para obtencao do Grau de Mestre em Engenharia Biomédica. Universidade Nova de Lisboa, Lisboa, 95 p.

[55]   Camargo, P.H.C., Satyanarayana, K.G. and Wypych, F. (2009) Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research, 12, 1-39.

[56]   Buttini, F., Colombo, P., Wenger, M.P.E., Mesquita, P., Marriott, C. and Jones, S.A. (2008) Back to Basics: The Development of a Simple, Homogenous, Two-Component Dry-Powder Inhaler Formulation for the Delivery of Budesonide Using Miscible Vinyl Polymers. Journal of Pharmaceutical Sciences, 97, 1257-1267.
http://dx.doi.org/10.1002/jps.21126

[57]   Furukawa, Y., Watkins, J.L., Kim, J., Curry, K.J. and Bennett, R.H. (2009) Aggregation of Montmorillonite and Organic Matter in Aqueous Media Containing Artificial Seawater. Geochemical Transactions, 10, 1-11.

[58]   Esposito, E., Drechsler, M., Mariani, P., Sivieri, E., Bozzini, R., Montesi, L., Menegatti, E. and Cortesi, R. (2007) Nanosystems for Skin Hydration: A Comparative Study. International Journal of Cosmetic Science, 29, 39-47.
http://dx.doi.org/10.1111/j.1467-2494.2007.00362.x

[59]   Teixeira-Neto, E. and Teixeira-Neto, A.A. (2009) Modificacao química de argilas: Desafios científicos e tecnológicos para obtencao de novos produtos com maior valor agregado. Química Nova, 32, 809-817.
http://dx.doi.org/10.1590/S0100-40422009000300023

[60]   Dornelas, C.B., Rezende, D.K., Tavares, M.I.B., Gomes, A.S. and Cabral, L.M. (2008) Preparation and Reactional Evaluation of Formation of PVP K-30—Montmorillonite (Natural and Organophilic) by X Ray Diffraction. Polímeros, 18, 187-192.
http://dx.doi.org/10.1590/S0104-14282008000200017

[61]   Dornelas, C.B., Grillo, L.A.M., Junior, I.D.B., Nascimento, T.G., Resende, D.K., Tavares, M.I.B., Gomes, A.S., Junior, A.M. and Cabral, L.M. (2010) Estudo do Processo de Intercalacao via Solucao PVP-Bentonita. A Avaliacao da Influencia do Tempo Reacional, da Proporcao de Polimero-argila e da Massa Molar Media. Polímeros, 20, 275-279.
http://dx.doi.org/10.1590/S0104-14282010005000047

[62]   Pohlmann, A.R., Weiss, V., Mertins, O., Silveira, N.P. and Guterres, S.S. (2002) Spray-Dried Indomethacin-Loaded Polyester Nanocapsules and Nanospheres: Development, Stability Evaluation and Nanostructure Models. European Journal of Pharmaceutical Science, 16, 305-312.
http://dx.doi.org/10.1016/S0928-0987(02)00127-6

[63]   Porte, L.H.M., Leao, M.H.M.R and Porte, A. (2011) Avaliacao da porosidade de microcáp-sulas contendo proteína bioativa por porosimetria de mercúrio e adsorcao de nitrogênio. Química Nova, 34, 1582-1587.
http://dx.doi.org/10.1590/S0100-40422011000900018

 
 
Top