Back
 MSA  Vol.7 No.9 , September 2016
A Study by Ab-Initio Calculation of Structural and Electronic Properties of Semiconductor Nanostructures Based on ZnSe
Abstract: Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that requires a calculation process using approximations such as Local Density (LDA) and Generalized Gradient (GGA) developed in the modelling software of nanostructures WIEN2k. The optimal structure of the binary semiconductor ZnSe crystallizing in the complex phase of Zinc Blende (B3) was determined by studying the variation of energy depending on the volume of the elementary cell. Then the electronic properties of the optimized state were analyzed such as the gap energy, the total density of states (TDOS), the partial density of states (PDOS) and the repartition of the electronic charge density. The obtained results were successful compared with other theoretical and experimental values reported in literature.
Cite this paper: Rachidi, A. , Atmani, E. , Fazouan, N. and Boujnah, M. (2016) A Study by Ab-Initio Calculation of Structural and Electronic Properties of Semiconductor Nanostructures Based on ZnSe. Materials Sciences and Applications, 7, 562-573. doi: 10.4236/msa.2016.79047.
References

[1]   Bredin, J.L. (1994) Ab Initio Study of Structural, Dielectric, and Dynamical Properties of Zinc-Blende ZnX (X = O, S, Se, Te). Physics Today, 47, 5.

[2]   Karazhanov, S.Zh., Ravindran, P., Kjekshus, A., Fjellvag, H. and Svensson, B.G. (2007) Electronic Structure and Optical Properties of ZnX (X=O, S, Se, Te): A Density Functional Study. Physical Review B, 75, Article ID: 155104.
http://dx.doi.org/10.1103/PhysRevB.75.155104

[3]   Tsuchiya, T., Ozaki, S. and Adachi, S.J. (2003) Modelling the Optical Constants of Cubic ZnS in the 0 - 20 eV Spectral Region. Journal of Physics: Condensed Matter, 15, 3717.

[4]   Walter, J.P., Cohen, M.L., Petroff, Y. and Balkanski, M. (1970) Calculated and Measured Reflectivity of ZnTe and ZnSe. Physical Review B, 1, 2661.
http://dx.doi.org/10.1103/PhysRevB.75.155104

[5]   Huang, M.-Z. and Ching, W.Y. (1993) Calculation of Optical Excitations in Cubic Semiconductors. I. Electronic Structure and Linear Response. Physical Review B, 47, 9446.

[6]   Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review B, 136, B864.
http://dx.doi.org/10.1103/PhysRevB.75.155104

[7]   Blaha, P., Schwarz, K., Medsen, G.K.H., Kvasnicka, D. and Luitz, J. (2001) WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University Technology, Vienna, Austria.

[8]   Schwarz, K. and Blaha, P. (2003) Solid State Calculations Using WIEN2k. Computational Materials Science, 28, 259-273.
http://dx.doi.org/10.1016/S0927-0256(03)00112-5

[9]   Murnaghan, F.D. (1944) The Compressibility of Media Under Extreme Pressures. Proceedings of the National Academy of Sciences USA, 30, 244.
http://dx.doi.org/10.1073/pnas.30.9.244

[10]   Casali, R.A. and Christensen, N.E. (1998) Elastic Constants and Deformation Potentials of ZnS and ZnSe under Pressure. Solid State Communications, 108, 793-798.
http://dx.doi.org/10.1016/S0038-1098(98)00303-2

[11]   Gangadharan, R., Jayalakshmi, V., Kalaiselvi, J., Mohan, S., Murugan, R. and Palanivel, B. (2003) Electronic and Structural Properties of Zinc Chalcogenides ZnX (X=S, Se, Te). Journal of Alloys and Compounds, 359, 22-26.
http://dx.doi.org/10.1016/S0038-1098(98)00303-2

[12]   Smelyansky, V.I. and Tse, J.S. (1995) Theoretical Study on the High-Pressure Phase Transformation in ZnSe. Physical Review B, 52, 4658. http://dx.doi.org/10.1103/PhysRevB.52.4658

[13]   Okoye, C.M.I. (2003) First-Principles Study of the Electronic and Optical Properties of Zincblende Zinc Selenide. Physica B: Condensed Matter, 337, 1-9.
http://dx.doi.org/10.1016/S0921-4526(03)00175-3

[14]   Khenata, R., et al. (2006) Elastic, Electronic and Optical Properties of ZnS, ZnSe and ZnTe under Pressure. Computational Materials Science, 38, 29-38.
http://dx.doi.org/10.1016/j.commatsci.2006.01.013

[15]   Lee, B.H. (1970) Pressure Dependence of the Second-Order Elastic Constants of ZnTe and ZnSe. Journal of Applied Physics, 41, 2988-2990.
http://dx.doi.org/10.1063/1.1659350

[16]   Mc Mahon, M.I., Nelmes, R.J., Allan, D.R., Belmonte, S.A. and Bovomratanaraks, T. (1998) Observation of a Simple-Cubic Phase of GaAs with a 16-Atom Basis (SC16). Physical Review Letters, 80, 5564-5567.
http://dx.doi.org/10.1103/PhysRevLett.80.5564

[17]   Lee, G.-D., Lee, M.H., and Ihm, J. (1995) Role of d Electrons in the Zinc-Blende Semiconductors ZnS, ZnSe, and ZnTe. Physical Review B, 3, 1459-1462.
http://dx.doi.org/10.1103/PhysRevB.52.1459

[18]   Boutaiba, F., Zaoui, A. and Ferhat, M. (2009) Fundamental and Transport Properties of ZnX, CdX and HgX (X = S, Se, Te) Compounds. Superlattices and Microstructures, 46. 823-832. http://dx.doi.org/10.1016/j.spmi.2009.09.002

[19]   Rashkeev, S.N. and Lambrecht, W.R.L. (2001) Second-Harmonic Generation of I-III-VI2 Chalcopyrite Semiconductors: Effects of Chemical Substitutions. Physical Review B, 63, Article ID: 165212.
http://dx.doi.org/10.1103/PhysRevB.63.165212

[20]   Onida, G., Reining, L. and Rubio, A. (2002) Electronic Excitations: Density-Functional Versus Many-Body Green’s-Function Approaches. Reviews of Modern Physics, 74, 601-659. http://dx.doi.org/10.1103/RevModPhys.74.601

[21]   Camargo-Martinez, J.A. and Baquero, R. (2012) Detailed Analysis of the Performance of the Modified Becke-Johnson Potential. Physical Review B, 86, Article ID: 195106.
http://dx.doi.org/10.1103/PhysRevB.86.195106

[22]   Venghaus, H. (1979) Valence-Band Parameters and g Factors of Cubic Zinc Selenide Derived from Free-Exciton Magneto-Reflectance. Physical Review B, 19, 3071-3082.
http://dx.doi.org/10.1103/PhysRevB.19.3071

[23]   Cardona, M. (1961) Fundamental Reflectivity Spectrum of Semiconductors with Zinc-Blende Structure. Journal of Applied Physics, 32, 2151-2155.
http://dx.doi.org/10.1063/1.1777034

[24]   Pollak, R.A., Ley, L., Kowalczyk, S.P., Shirley, D.A., Joannopoulos, J., Chadi, D.J. and Cohen, L.M. (1973) X-Ray Photoemission Valence-Band Spectra and Theoretical Valence-Band Densities of States for Ge, GaAs, and ZnSe. Physical Review Letters, 29, 1103-1105. http://dx.doi.org/10.1103/PhysRevLett.29.1103
Gorbman, W.D. and Eastman, D.E. (1972) Photoemission Valence-Band Densities of States for Si, Ge, and GaAs Using Synchrotron Radiation. Physical Review Letters, 29, 1508-1512.
http://dx.doi.org/10.1103/PhysRevLett.29.1508


[25]   Kasap, S.O. and Capper, P. (2006) Springer Handbook of Electronic and Photonic Materials. Springer, Berlin.

[26]   Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H. and Rabah, M. (2006) Elastic, Electronic and Optical Properties of ZnS, ZnSe and ZnTe under Pressure. Computational Materials Science, 38, 29-38.
http://dx.doi.org/10.1016/j.commatsci.2006.01.013

[27]   Rabah, M., Abbar, B., Al-Douri, Y., Bouhafs, B. and Sahraoui, B. (2003) Calculation of Structural, Optical and Electronic Properties of ZnS, ZnSe, MgS, MgSe and Their Quaternary Alloy Mg1-xZnxSySe1-y. Materials Science and Engineering B, 100, 163-171.
http://dx.doi.org/10.1016/S0921-5107(03)00093-X

[28]   Heyd, J., Peralta, J.E. and Scuseria, G.E. (2005) Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. Journal of Chemical Physics, 123, Article ID: 174101.
http://dx.doi.org/10.1063/1.2085170

[29]   Camargo-Martinez, J.A. and Baquero, R. (2012) The Band Gap Problem: The Accuracy of the Wien2k Code Confronted. arXiv: 1208.2057v1[cond-mat.str-el]

[30]   Cheliokowsky, J.R. and Cohen, M.L. (1976) Nonlocal Pseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-Blende Semiconductors. Physical Review B, 14, 556-582.
http://dx.doi.org/10.1103/PhysRevB.14.556

[31]   Wang, C.S. and Klein, B.M. (1981) First-Principles Electronic Structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. I. Self-Consistent Energy Bands, Charge Densities, and Effective Masses. Physical Review B, 24, 3393-3416.
http://dx.doi.org/10.1103/PhysRevB.24.3393

[32]   Li, Z.Q. and Potz, W. (1992) Electronic Density of States of Semiconductor Alloys from Lattice-Mismatched Isovalent Binary Constituents. Physical Review B, 45, 2109-2118.
http://dx.doi.org/10.1103/PhysRevB.46.2109

[33]   Karazhanov, S.Z. and Lew Yan Voon, L.C. (2005) Ab Initio Studies of the Band Parameters. Semiconductors, 39, 161-173.
http://dx.doi.org/10.1134/1.1864192

 
 
Top