OJCE  Vol.6 No.4 , September 2016
Variable Thermal Comfort Index for Indoor Work Space in Office Buildings: A Study in Germany
Abstract: International standards state the thermal comfort requirements that office spaces must comply with. These are based on a model developed by Prof. Paul Ole Fanger of the Centre for Indoor Environment and Energy, Denmark. Today, forty-year research shows an evolution in these experiences. The work presented here is to develop a tool to evaluate the thermal comfort of working environments of office buildings. A methodology is devised on the basis of on-site measurements and questionnaire responses. For measurements, a mobile unit equipped with sensors is used, whereas the questionnaire obtains user responses on thermal quality of the work space. The thermal conditions of thirty office buildings presenting different acclimatization systems have been surveyed. The correlation between objective and subjective data allows developing a formula that shows the thermal comfort level for a given environment as a function of local aspects. For the surveyed buildings, the resulting comfortable temperature was 23.3, and the minimum percentage of user individuals experiencing discomfort with such temperature was 7%.
Cite this paper: Kuchen, E. (2016) Variable Thermal Comfort Index for Indoor Work Space in Office Buildings: A Study in Germany. Open Journal of Civil Engineering, 6, 670-684. doi: 10.4236/ojce.2016.64054.

[1]   ISO 7730 (2005) Ergonomics of the Thermal Environment. Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria.

[2]   Fanger, P.O. (1970) Thermal Comfort. Technical University of Denmark, Laboratory of Heating and Air Conditioning, Danish Technical Press, Copenhagen.

[3]   Kuchen, E. (2008) Spot-Monitoring zum thermischen Komfort in Bürogebäude. PhD Thesis, Dissertation, Technische Universität, Braunschweig. Der Andere Verlag, Tönning, Germany.

[4]   Kuchen, E and Fisch, M.N. (2009) Spot Monitoring—Thermal Comfort Evaluation in 25 Office Buildings in Winter. Building and Environment, 44, 839-847.

[5]   Bedford, T. (1950) Environmental Warmth and Human Comfort. British Journal and Applied Physics, 1, 33-38.

[6]   Frank, W. (1975) Raumklima und Thermische Behaglichkeit. Institut für Bauphysik der Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. mit 21 Bildern und 12 Tabellen. Wilhelm Ernst & Sohn KG., Germany.

[7]   Auliciems, A. (1969) Effects of Weather on Indoor Thermal Comfort. International Journal of Biometeorology, 13, 147-162.

[8]   Mayer, E. (1998) Ist die bisherige Zuordnung von PMV und PPD noch richtig? Klimatechnik/Behaglichkeit. Ki Luft-und Kältetechnik, 54, 575-577.

[9]   Hellwig, R.T. (2005) Thermische Behaglichkeit. Unterschiede zwischen frei-und mechanischen belüfteten Büro-gebäuden aus Nutzersicht. PhD Thesis Dissertation, Technische Universität, München.

[10]   Nicol, J.F. and Humphreys, M.A. (2002) Adaptive Thermal Comfort and Sustainable Thermal Standards for Buildings. Oxford Centre for Sustainable Development, School of Architecture, Oxford Brookes University, Oxford.

[11]   De Dear, R. (2004) Thermal Comfort in Practice. Division of Environmental and Life Sciences, Macquarie University, Australia. Indoor Air, 14, 32-39.

[12]   Raue, A.K., Boestra A.C., van der Linden, A.C. and Kurvers, S.R. (2004) NATVENT Buildings versus HVAC Buildings. A New Dutch Thermal Comfort Guideline. 25th Air Infiltration and Ventilation Centre Conference, Prague, 15-17 September 2004.

[13]   Hellwig, R.T. and Bischof, W. (2006) Gültigkeit Therzmischer Behaglichkeitsmodelle. Bauphysik, 28, 131-136.

[14]   Boestra, A.C. (2006) The Adaptive Thermal Comfort Criterion in the New EPBD IEQ Standard. BBA Indoor Environmental Consultancy, the Netherlands.

[15]   ASHRAE 55 (2004) Thermal Environmental Conditions for Human Occupancy. (Supersedes ANSI/ASHRAE Standard 55 (1992)).

[16]   Nicol, J.F. and Humphreys, M.A. (2005) Maximum Temperatures in Buildings to Avoid Heat Discomfort. International Conference of Passive and Low Energy Cooling for the Built Environment, Santorini, 19-21 May 2005.

[17]   Fisch, M.N., Plesser, S., and Bremer, C. (2007) EVA—Evaluierung von Energiekonzepten für Bürogebäude. Bericht zur Grobanalyse, BMWA.

[18]   De Dear, R., Brager, G.S. and Cooper, D. (1997) Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE RP-884, Macquarie University, Sydney, Australia and Centre for Environmental Design Research, University of California, Berkley.

[19]   Raue, A.K., Kurvers, S.R., van der Linden, A.C., Boestra, A.C. and Plokker, W. (2006) Dutch Thermal Comfort Guidelines. From Weighted Temperature Exceeding Hours towards Adaptive Temperature Limits, The Netherlands.

[20]   Gonzalo, G.E., Nota, V.M., Hernández, S.P., Martínez, C.F. and Ledesma, S.L. (2007) Diseño Bioclimático de Oficinas. Instituto de Acondicionamiento Ambiental, Tucumán, Argentina, 285.

[21]   DIN EN ISO 7726 (2002) Umgebunsklima. Instrumente zur Messung physikalischer Gröbetaen, Deutsche Fassung.

[22]   Schiller, G.E., Arens, E.A., Bauman, P.E., Benton, C., Fountain, M. and Doherty, T. (1988) A Field Study of Thermal Environments and Comfort in Office Buildings. Centre for the Built Environment, University of California, No. 3164 (RP-462), Berkley.

[23]   McCartney, K.J. and Nicol, J.F. (2002) Developing an Adaptive Control Algorithm for Europe: Results of the SCATs Project. Oxford Centre for Sustainable Development, Oxford Brookes University, Oxford.

[24]   Cena, K. and de Dear, R. (1998) Field Study of Occupant Comfort and Office Thermal Environments in a Hot-Arid Climate. Final Report ASHRAE, RP-921, Institute for Environmental Science, Murdoch University, Perth.

[25]   EN ISO 10551 (2002) Ergonomie des Umgebungsklimas. Beurteilung des Einflusses des Umgebungsklima unter Anwendung subjektiver Bewertungsskalen. Deutsche Fassung (ISO 19551 (1995)).

[26]   Auliciems, A. and de Dear, R. (1986) Air Conditioning in a Tropical Climate: Impacts upon European Residents in Darwin, Australia. International Journal of Biometerology, 30, 259- 282.

[27]   McIntyre, D.A. (1978) Three Approaches to Thermal Comfort. ASHRAE Transactions, 84, 101-109.

[28]   De Dear, R. and Brager, G.S. (2001) The Adaptive Model of Thermal Comfort and Energy Conservation in the Built Environment. International Journal of Biometerology, 45, 100- 108.

[29]   ISSO 74 (2004) Thermische Behaaglijkeid. New Dutch Thermal Comfort Guideline. Publication 74, Rotterdam, Holland.

[30]   Auliciems, A. (1981) Towards a Psycho-Physiological Model of Thermal Perception. International Journal of Biometerology, 25, 109-122.

[31]   Nicol, J.F. and Raja, I.A. (1997) Indoor Thermal Comfort: The Pakistan Study. Energy for Sustainable Development, 3, 50-60.

[32]   Ye, X.J., Zhou, Z.P., Lian, Z.W., Liu, H.M., Li, C.Z. and Liu, Y.M. (2006) Field Study of a Thermal Environmental and Adaptive Model in Shanghai. Indoor Air, 16, 320-326.

[33]   Griffiths, I. (1990) Thermal Comfort Studies in Buildings with Passive Solar Features. Field Studies. Report to the Commission of the European Community, ENS35 090 UK.

[34]   Huizenga, C., Abbaszadeh, S., Zagreus, L. and Arens, E. (2006) Air Quality and Thermal Comfort in Office Buildings: Results of a Large Indoor Environmental Quality Survey. Proceedings of Healthy Buildings, 3, 393-397.