AJAC  Vol.2 No.4 , August 2011
Microwave-Assisted Rapid Extracellular Biosynthesis of Silver Nanoparticles Using Carom Seed (Trachyspermum copticum) Extract and in Vitro Studies
Abstract: Microwave-assisted rapid extracellular biosynthesis of silver nanoparticles was carried out by using carom seed (Trachyspermum copticum) extract as the reducing agent. The reaction mixture containing AgNO3 and carom seed extract when exposed to microwave irradiation resulted in reducing silver ions to bio-functionalized silver nanoparticles of size 6- 50 nm. The AgNP were characterized by UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Themogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR) are used to understand the possible mechanism of biosynthesis. In this study, we have also investigated the antimicrobial and antioxidant activities of bio-functionalized AgNP. The antibacterial activity is investigated by measuring the zone of inhibition and antioxidant study is done using 1,1-diphenyl-2-picryl hydrazyl (DPPH) method.
Cite this paper: nullD. Raghunandan, P. Borgaonkar, B. Bendegumble, M. Bedre, M. Bhagawanraju, M. Yalagatti, D. Huh and V. Abbaraju, "Microwave-Assisted Rapid Extracellular Biosynthesis of Silver Nanoparticles Using Carom Seed (Trachyspermum copticum) Extract and in Vitro Studies," American Journal of Analytical Chemistry, Vol. 2 No. 4, 2011, pp. 475-483. doi: 10.4236/ajac.2011.24057.

[1]   H. Devalapally, A. Chakilam and M. M. Amiji, “Role of Nanotechnology in Pharmaceutical Product Development,” Journal of Pharmaceutical Sciences, Vol. 96, No. 10, 2007, pp. 2547-2565.

[2]   B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Ka-tata, J. Verschoor and H. S. Swai, “In Vivo Evaluation of the Biodistribution and Safety of PLGA Nanoparticles as Drug Delivery Systems,” Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 6, No. 1, February 2010, pp. 662-671.

[3]   P. K. Jain, X. Huang, H. Ivan, I. El-Sayed and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Accounts of Chemical Research, Vol. 41, No. 12, May 2008, pp. 1578-1586.

[4]   H. Lu, E. L. Salabas and F. Schüth, “Magnetic Nanopar-ticles: Synthesis, Protection, Functionalization, and Ap-plication,” Angewandte Chemie, International Edition, Vol. 46, No. 8, February 2007, pp. 1222-1244.

[5]   Y. Liu and L. Lin. “New Pathway for the Synthesis of Ultrafine Silver Nanoparticles from Bulk Silver Substrates in Aqueous Solutions by Sonoelectrochemical Methods,” Electrochemistry Communications, Vol. 6, No. 11, No-vember 2004, pp. 1163-1168. .

[6]   G. Aliev, J. Daza, A. Lipsitt, M. Martínez-Agüero, H. H. Palacios, K. Fischbach, M. E. Obrenovich, J. C. LaManna, V. Bragin and L. Morales, “Silver Nanoparticles as Alter-nate Strategies for Drug Delivery to Alzheimer Brain,” Alzheimer’s and Dementia, Vol. 5, No. 4, June 2009, p. 324..

[7]   K. Roy, H. Q. Mao, S. K. Huang and W. Leong. “Oral Gene Delivery with Chitosan?DNA Nanoparticles Gene-rates Immunologic Protection in a Murine Model of Peanut Allergy,” Nature Medicine, Vol. 5, No. 4, 1999, pp. 387-391.

[8]   E. Sachlos, D. Gotora and J. T. Czernuszka, “Collagen Scaffolds Reinforced with Biomimetic Composite Na-no-Sized Carbonate-Substituted Hydroxyapatite Crystals and Shaped by Rapid Prototyping to Contain Internal Mi-crochannels,” Tissue Engineering, Vol. 12, No. 9, Sep-tember 2006, pp. 2479-2487.

[9]   J. S. Kim, E. Kuk, K. N. Yu, J. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Hwang , Y. Kim, Y. Lee, D. H. Jeong and M. Cho, “Antimicrobial Effects of Silver Nanoparticles,” Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, March 2007, pp. 95-101.

[10]   J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Cama-cho-Bragado, X. Gao, H. H. Lara and M. J. Yacaman, “Interaction of Silver Nanoparticles with HIV-1,” Journal of Nanobiotechnology, Vol. 3, No. 6, June 2005, p. 6.

[11]   F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Ar-nold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Win-ship and H. J. Reid, “Silver Nanoparticles and Polymeric Medical Devices: A New Approach to Prevention of In-fection,” Journal of Antimicrobial Chemotherapy, Vol. 54, No. 6, September 2004, pp. 1019-1924.

[12]   P. Mukherjee, S. Senapati, D. Mandal, et al., “Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium Oxysporum,” Colloids and Surfaces B: Bioin-terfaces, Vol. 28, No. 4, May 2003, pp. 313-318.

[13]   S. Basavaraja, D. S. Balaji, A. Lagashetty, A. H. Rajasab and A. Venkataraman, “Extracellular Biosynthesis of Sil-ver Nanoparticles Using the Fungus Fusarium Semitec-tum,” Materials Research Bulletin, Vol. 43, No. 5, 2008, pp. 1164-1170.

[14]   D. S. Balaji, S. Basavaraja, D. Raghunandan, B. Mahesh, B. K. Prabhakar and A. Venkataraman. “Extracellular Biosynthesis of Functionalized Silver Nanoparticles by Strains of Cladosporium Cladosporioides Fungus,” Collo-ids and Surfaces B: Biointerfaces, Vol. 68, No. 1, January 2009, pp. 88-92. .

[15]   L. J. Gardea-Torresdey, E. Gomez, R. J. Peralta-Videa, J. G. Parsons, H. Troiani and M. Jose-Yacaman, “Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Na-noparticles,” Langmuir, Vol. 19, No. 4, 2003, pp 1357- 1361.

[16]   S. S. Shankar, A. Rai, A. Ahmad and M. Sastry. “Rapid Synthesis of Au, Ag, and Bimetallic Au Core–Ag Shell Nanoparticles Using Neem (Azadirachta Indica) Leaf Broth,” Journal of Colloid and Interface Science, Vol. 275, No. 2, May 2004, pp. 496-502.

[17]   D. Raghunandan, S. Basavaraja, B. Mahesh, S. Balaji, S. Y. Manjunath and A. Venkataraman, “Rapid Biosynthesis of Irregular Shaped Gold Nanoparticles from Macerated Aqueous Extracellular Dried Clove Buds (Syzygium Aromaticum) Solution,” Colloids and Surfaces B: Bioin-terfaces, Vol. 79, No. 1, August 2010, pp. 235-240.

[18]   C. Thangham and R. Dhananjayan, “Antiinflammatory Potential of the Seeds of Carum Copticum Linn,” Indian Journal of Pharmacology, Vol. 35, No. 6, 2003, pp. 388- 391. .

[19]   P. S. Murthy, B. B. Borse, H. Khanum and P. Srinivas, “Inhibitory Effects of Ajowan (Trachyspermum Ammi) Ethanolic Extract on A. Ochraceus Growth and Ochratoxin Production,” Turkish Journal of Biology, Vol. 33, No. 3, 2009, pp. 211-217. .

[20]   V. Polshettiwar and R. S. Varma, “Microwave-Assisted Organic Synthesis and Transformations Using Benign Reaction Media,” Accounts of Chemical Research, Vol. 41, No. 5, 2008, pp. 629-639.

[21]   S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, “Biological Synthesis of Triangular Gold Nanoprisms,” Nature Materials, Vol. 3, June 2004, pp. 482-488.

[22]   K. Sau, A. L. Rogach, F. J?ckel, T. A. Klar and J. Feld-mann. “Properties and Applications of Colloidal Non-spherical Noble Metal Nanoparticles,” Advanced Materials, Vol. 22, No. 16, April 2010, pp. 1805-1825.

[23]   M. A. Garcia, J. Venta, P. Crespo, J. Lopis, S. Penadés, A. Fernández and A. Hernando, “Surface Plasmon Resonance of Capped Au Nanoparticles,” Physical Review B, Vol. 72, No. 24, December 2005, pp. 1-4.

[24]   R. A. Sperling and W. J. Parak, “Surface Modification, Functionalization and Bioconjugation of Colloidal Inor-ganic Nanoparticles,” Philosophical Transactions of the Royal Society A, Vol. 368, No. 1915, March 2010, pp. 1333-1383..

[25]   F. Chialva, F. Monguzzi, P. Manitto and A. Akgul. “Es-sential Oil Constituents of Trachyspermum Capticum (L.) Link Fruits,” The Journal of Essential Oil Research, Vol. 5, No. 1, 1993, pp. 105-106.

[26]   M. K. Juewon, A. Kanayama, K. Takahashi, et al., “In Vitro Free Radical Scavenging Activity of Platinum Na-noparticles,” Nanotechnology, Vol. 20, No. 45, 2009, Ar-ticle ID: 455105.