Back
 JAMP  Vol.4 No.9 , September 2016
Effects of Hydromagnetic and Thermophoresis of Unsteady Forced Convection Boundary Layer Flow over Flat Plates
Abstract: In this paper, we analyze unsteady two dimensional hydromagnetic forced convection boundary layer flow of a viscous incompressible fluid along flat plates with thermophoresis. The potential flow velocity has been taken as a function of the distance x and time t. The governing partial differential equations are transformed to ordinary differential equation by applying local similarity transformation. The resulting similarity equations are then solved numerically for unsteady case, applying Nachtsheim-Swigert shooting iteration technique with six order Runge-Kutta method. The variations in fluid velocity, fluid temperature and species concentration are displayed graphically and discussed for different material parameters entering into the analysis. The effects of the pertinent parameters on the skin-friction coefficient, wall heat transfer coefficient and wall deposition flux rate are also displayed in tabulated form and discussed them from the physical point of view. An analysis of the obtained results shows that the flow field is influenced appreciably by the magnetic field parameter and the thermophoresis particle deposition.
Cite this paper: Uddin, M. and Ali, M. (2016) Effects of Hydromagnetic and Thermophoresis of Unsteady Forced Convection Boundary Layer Flow over Flat Plates. Journal of Applied Mathematics and Physics, 4, 1756-1776. doi: 10.4236/jamp.2016.49182.
References

[1]   Duwairi, H.M. and Damesh, R.A. (2008) Effects of Thermophoresis Particle Deposition on Mixed Convection from Vertical Surfaces Embedded in Saturated Porous Medium. International Journal of Numerical Methods for Heat & Fluid Flow, 18, 202-216.
http://dx.doi.org/10.1108/09615530810846347

[2]   Postelnicu, A. (2012) Thermophersis Partical Deposition in Natural Convection over Inclined Surfaces in Porus Media. International Journal of Heat and Mass Transfer, 55, 2087-2094. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.011

[3]   Goren, S.L. (1977) Thermophoresis of Aerosol Particles in the Laminar Boundary Layer on a Flat Surface. Journal of Colloid and Interface Science, 61, 77-85.
http://dx.doi.org/10.1016/0021-9797(77)90416-7

[4]   Walker, K.L., Homsy, G.M. and Geying, F.T. (1979) Thermophoretic Deposition of Small Particles in Laminar Tube. Journal of Colloid and Interface Science, 69, 138-147.
http://dx.doi.org/10.1016/0021-9797(79)90088-2

[5]   Rahman, M.M., Alam, M.S. and Chowdhury, M.K. (2012) Local Similarity Solutions for Unsteady Two Dimensional Forced Convective Heat and Mass Transfer Flow along a Wedge with Thermophoresis. International Journal of Applied Mathematics and Mechanics, 8, 96-112.

[6]   Aldoss, T.K., Al-Nimr, M.A., Jarrah, M.A. and Al-Shaer, B.J. (1995) Magnetohydrodynamic Mixed Convection from a Vertical Plate Embedded in a Porous Medium, Numer. Heat Transfer, 28, 635-645.
http://dx.doi.org/10.1080/10407789508913766

[7]   Ali, M.Y. and Hafez, M.G. (2012) A Case of Similarity Solution for Unsteady Laminar Boundary Layer Flow in Curvilinear Surface. ARPN Journal of Engineering and Applied Science, 7, 731-739.

[8]   Seth, G.S. and Ansari, M.S. (2010) MHD Natural Convection Flow Past an Impulsively Moving Vertical Plate with Ramped Wall Temperature in the Presence of Thermal Diffusion with Heat Absorption. International Journal of Applied Mechanics and Engineering, 15, 199-215.

[9]   Nandkeolyar, R. and Das, M. (2013) Unsteady MHD Free Convection Flow of a Heat Absorbing Dusty Fluid Past a Flat Plate with Ramped Wall Temperature. Afrika Matematika, 25, 779-798.
http://dx.doi.org/10.1007/s13370-013-0151-9

[10]   Kim, Y.J. (2000) Unsteady MHD Con-vective Heat Transfer past a Semi-Infinite Vertical Porous Moving Plate with Variable Suction. International Journal of Engineering Science, 38, 833-845.
http://dx.doi.org/10.1016/S0020-7225(99)00063-4

[11]   Ishak, A., Nazar, R. and Pop, I. (2008) MHD Boundary Layer Flow of a Micropolar Fluid Past a Wedge with Variable Wall Temperature. Acta Mechanica, 196, 75-86.
http://dx.doi.org/10.1007/s00707-007-0499-8

[12]   Elbashbeshy, E.M.A., Bazid, M.A. and Aldawody, D.A. (2011) Effect of Magnetic Field on Boundary Layer Flow over an Unsteady Stretching Surface in a Micropolar Fluid. International Journal of Heat and Technology, 29, 69-74.

[13]   Alam, M.S. and Chapal Hossain, S.M. (2013) A New Similarity Approach for an Unsteady Two Dimensional Forced Convective Flow of a Micropolar Fluid along a Wedge. International Journal of Applied Mathematics and Mechanics, 9, 75-89.

[14]   Jia, G., Cipolla, J.W. and Yener, Y. (1992) Thermophoresis of a Radiating Aerosol in Laminar Boundary Layer Flow. Journal of Thermophysics and Heat Transfer, 6, 476-482.
http://dx.doi.org/10.2514/3.385

[15]   Chiou, M.C. and Cleaver, J.W. (1996) Effect of Thermophoresis on Submicron Particle Deposition from a Laminar Forced Convection Boundary Layer Flow on to an Isothermal Cylinder. Journal of Aerosol Science, 27, 1155-1167.
http://dx.doi.org/10.1016/0021-8502(96)00045-6

[16]   Selim, A., Hossain, M.A. and Rees, D.A.S. (2003) The Effect of Surface Mass Transfer on Mixed Convection Flow Past a Heated Vertical Flat Permeable Plate with Thermophoresis. International Journal of Thermal Sciences, 42, 973-982.
http://dx.doi.org/10.1016/S1290-0729(03)00075-9

[17]   Seth, G.S. and Sarker, S. (2015) Hydromagnetic Natural Convection Flow with Induced Magnetic Field and nth Order Chemical Reaction of a Heat Absorbing Fluid Past an Impulsively Moving Vertical Plate with Ramped Temperature. Bulgarian Chemical Communications, 47, 66-79.

[18]   Parvin, S., Nasrin, R., Alim, M.A. and Hossain, N.F. (2013) Effect of Prandtl Number on Forced Convection in a Two Sided Open Enclosure Using Nanofluid. Journal of Scientific Research, 5, 67-75.

[19]   Chamkha, A.J. (2004) Unsteady MHD Convective Heat and Mass Transfer past a Semi-Infinite Vertical Permeable Moving Plate with Heat Absorption. International Journal of Engineering Science, 42, 217-230.
http://dx.doi.org/10.1016/S0020-7225(03)00285-4

[20]   Jhankal, A.K. and Kumar, M. (2013) MHD Boundary Layer Flow Past a Stretching Plate With Heat Transfer. International Journal of Engineering Science, 2, 9-13.

[21]   Bhattacharyya, K. (2012) Mass Transfer on a Continuous Flat Plate Moving in Parallel or Reversely to a Free Stream in the Presence of a Chemical Reaction. International Journal of Heat and Mass Transfer, 55, 3482-3487.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.005

[22]   Kuiry, D.R. and Bahadur, S. (2015) Steady MHD Flow of Viscous Fluid between Two Parallel Porous Plates with Heat Transfer in an Inclined Magnetic Field. Journal of Scientific Research, 7, 21-31.
http://dx.doi.org/10.3329/jsr.v7i3.22574

[23]   Khan, M.S., Alam, M.M. and Ferdows, M. (2013) Effects of Magnetic Field on Radiative Flow of a Nanofluid Past a Stretching Sheet. Procedia Engineering, 56, 316-322.
http://dx.doi.org/10.1016/j.proeng.2013.03.125

[24]   Noor, N.F.M., Abbasbandy, S. and Hashim, I. (2012) Heat and Mass Transfer of Thermophoretic MHD Flow over an Inclined Radiate Isothermal Permeable Surface in the Presence of Heat Source/Sink. International Journal of Heat and Mass Transfer, 55, 2122-2128.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.015

[25]   Haddad, Z., Nada, A., Oztop, F. and Mataoui, A. (2012) International Journal of Thermal Sciences, 57, 152-162.
http://dx.doi.org/10.1016/j.ijthermalsci.2012.01.016

[26]   Khaleque, S.T. and Samad, M.A. (2010) Effects of Radiation, Heat Generation and Viscous Dissipation on MHD Free Convection Flow along a Stretching Sheet. Research Journal of Applied Sciences, Engineering and Technology, 2, 368-377.

 
 
Top